timm
/

Image Classification
timm
PyTorch
Safetensors
rwightman HF staff commited on
Commit
2dd4221
1 Parent(s): 00ec752
Files changed (4) hide show
  1. README.md +135 -0
  2. config.json +35 -0
  3. model.safetensors +3 -0
  4. pytorch_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - image-classification
4
+ - timm
5
+ library_name: timm
6
+ license: apache-2.0
7
+ datasets:
8
+ - imagenet-1k
9
+ ---
10
+ # Model card for xception41.tf_in1k
11
+
12
+ An Aligned Xception image classification model. Trained on ImageNet-1k in Tensorflow and ported to PyTorch by Ross Wightman.
13
+
14
+ ## Model Details
15
+ - **Model Type:** Image classification / feature backbone
16
+ - **Model Stats:**
17
+ - Params (M): 27.0
18
+ - GMACs: 9.3
19
+ - Activations (M): 39.9
20
+ - Image size: 299 x 299
21
+ - **Papers:**
22
+ - Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation: https://arxiv.org/abs/1802.02611
23
+ - Xception: Deep Learning with Depthwise Separable Convolutions: https://arxiv.org/abs/1610.02357
24
+ - **Dataset:** ImageNet-1k
25
+ - **Original:** https://github.com/tensorflow/models/blob/master/research/deeplab/
26
+
27
+ ## Model Usage
28
+ ### Image Classification
29
+ ```python
30
+ from urllib.request import urlopen
31
+ from PIL import Image
32
+ import timm
33
+
34
+ img = Image.open(urlopen(
35
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
36
+ ))
37
+
38
+ model = timm.create_model('xception41.tf_in1k', pretrained=True)
39
+ model = model.eval()
40
+
41
+ # get model specific transforms (normalization, resize)
42
+ data_config = timm.data.resolve_model_data_config(model)
43
+ transforms = timm.data.create_transform(**data_config, is_training=False)
44
+
45
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
46
+
47
+ top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
48
+ ```
49
+
50
+ ### Feature Map Extraction
51
+ ```python
52
+ from urllib.request import urlopen
53
+ from PIL import Image
54
+ import timm
55
+
56
+ img = Image.open(urlopen(
57
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
58
+ ))
59
+
60
+ model = timm.create_model(
61
+ 'xception41.tf_in1k',
62
+ pretrained=True,
63
+ features_only=True,
64
+ )
65
+ model = model.eval()
66
+
67
+ # get model specific transforms (normalization, resize)
68
+ data_config = timm.data.resolve_model_data_config(model)
69
+ transforms = timm.data.create_transform(**data_config, is_training=False)
70
+
71
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
72
+
73
+ for o in output:
74
+ # print shape of each feature map in output
75
+ # e.g.:
76
+ # torch.Size([1, 128, 150, 150])
77
+ # torch.Size([1, 256, 75, 75])
78
+ # torch.Size([1, 728, 38, 38])
79
+ # torch.Size([1, 1024, 19, 19])
80
+ # torch.Size([1, 2048, 10, 10])
81
+
82
+ print(o.shape)
83
+ ```
84
+
85
+ ### Image Embeddings
86
+ ```python
87
+ from urllib.request import urlopen
88
+ from PIL import Image
89
+ import timm
90
+
91
+ img = Image.open(urlopen(
92
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
93
+ ))
94
+
95
+ model = timm.create_model(
96
+ 'xception41.tf_in1k',
97
+ pretrained=True,
98
+ num_classes=0, # remove classifier nn.Linear
99
+ )
100
+ model = model.eval()
101
+
102
+ # get model specific transforms (normalization, resize)
103
+ data_config = timm.data.resolve_model_data_config(model)
104
+ transforms = timm.data.create_transform(**data_config, is_training=False)
105
+
106
+ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
107
+
108
+ # or equivalently (without needing to set num_classes=0)
109
+
110
+ output = model.forward_features(transforms(img).unsqueeze(0))
111
+ # output is unpooled, a (1, 2048, 10, 10) shaped tensor
112
+
113
+ output = model.forward_head(output, pre_logits=True)
114
+ # output is a (1, num_features) shaped tensor
115
+ ```
116
+
117
+ ## Citation
118
+ ```bibtex
119
+ @inproceedings{deeplabv3plus2018,
120
+ title={Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation},
121
+ author={Liang-Chieh Chen and Yukun Zhu and George Papandreou and Florian Schroff and Hartwig Adam},
122
+ booktitle={ECCV},
123
+ year={2018}
124
+ }
125
+ ```
126
+ ```bibtex
127
+ @misc{chollet2017xception,
128
+ title={Xception: Deep Learning with Depthwise Separable Convolutions},
129
+ author={François Chollet},
130
+ year={2017},
131
+ eprint={1610.02357},
132
+ archivePrefix={arXiv},
133
+ primaryClass={cs.CV}
134
+ }
135
+ ```
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architecture": "xception41",
3
+ "num_classes": 1000,
4
+ "num_features": 2048,
5
+ "pretrained_cfg": {
6
+ "tag": "tf_in1k",
7
+ "custom_load": false,
8
+ "input_size": [
9
+ 3,
10
+ 299,
11
+ 299
12
+ ],
13
+ "fixed_input_size": false,
14
+ "interpolation": "bicubic",
15
+ "crop_pct": 0.903,
16
+ "crop_mode": "center",
17
+ "mean": [
18
+ 0.5,
19
+ 0.5,
20
+ 0.5
21
+ ],
22
+ "std": [
23
+ 0.5,
24
+ 0.5,
25
+ 0.5
26
+ ],
27
+ "num_classes": 1000,
28
+ "pool_size": [
29
+ 10,
30
+ 10
31
+ ],
32
+ "first_conv": "stem.0.conv",
33
+ "classifier": "head.fc"
34
+ }
35
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c208ded589c3f45080f3c50b9c84fa4f1cb51aea1fc5308e5a58efc7f4f2892d
3
+ size 108392156
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0579e09a0719d1b25af0861b4f423b467fa9f98c51bd36f007b15ae675e6bc63
3
+ size 108508725