timm
/

Image Classification
timm
PyTorch
Safetensors
rwightman HF staff commited on
Commit
3ce92fa
1 Parent(s): 7d12136
Files changed (4) hide show
  1. README.md +161 -0
  2. config.json +41 -0
  3. model.safetensors +3 -0
  4. pytorch_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - image-classification
4
+ - timm
5
+ library_name: timm
6
+ license: apache-2.0
7
+ datasets:
8
+ - imagenet-1k
9
+ ---
10
+ # Model card for mobilenetv4_conv_large.e600_r384_in1k
11
+
12
+ A MobileNet-V4 image classification model. Trained on ImageNet-1k by Ross Wightman.
13
+
14
+ Trained with `timm` scripts using hyper-parameters (mostly) similar to those in the paper.
15
+
16
+ NOTE: So far, these are the only known MNV4 weights. Official weights for Tensorflow models are unreleased.
17
+
18
+
19
+ ## Model Details
20
+ - **Model Type:** Image classification / feature backbone
21
+ - **Model Stats:**
22
+ - Params (M): 32.6
23
+ - GMACs: 6.4
24
+ - Activations (M): 27.3
25
+ - Image size: train = 384 x 384, test = 448 x 448
26
+ - **Dataset:** ImageNet-1k
27
+ - **Papers:**
28
+ - MobileNetV4 -- Universal Models for the Mobile Ecosystem: https://arxiv.org/abs/2404.10518
29
+ - PyTorch Image Models: https://github.com/huggingface/pytorch-image-models
30
+ - **Original:** https://github.com/tensorflow/models/tree/master/official/vision
31
+
32
+ ## Model Usage
33
+ ### Image Classification
34
+ ```python
35
+ from urllib.request import urlopen
36
+ from PIL import Image
37
+ import timm
38
+
39
+ img = Image.open(urlopen(
40
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
41
+ ))
42
+
43
+ model = timm.create_model('mobilenetv4_conv_large.e600_r384_in1k', pretrained=True)
44
+ model = model.eval()
45
+
46
+ # get model specific transforms (normalization, resize)
47
+ data_config = timm.data.resolve_model_data_config(model)
48
+ transforms = timm.data.create_transform(**data_config, is_training=False)
49
+
50
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
51
+
52
+ top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
53
+ ```
54
+
55
+ ### Feature Map Extraction
56
+ ```python
57
+ from urllib.request import urlopen
58
+ from PIL import Image
59
+ import timm
60
+
61
+ img = Image.open(urlopen(
62
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
63
+ ))
64
+
65
+ model = timm.create_model(
66
+ 'mobilenetv4_conv_large.e600_r384_in1k',
67
+ pretrained=True,
68
+ features_only=True,
69
+ )
70
+ model = model.eval()
71
+
72
+ # get model specific transforms (normalization, resize)
73
+ data_config = timm.data.resolve_model_data_config(model)
74
+ transforms = timm.data.create_transform(**data_config, is_training=False)
75
+
76
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
77
+
78
+ for o in output:
79
+ # print shape of each feature map in output
80
+ # e.g.:
81
+ # torch.Size([1, 24, 192, 192])
82
+ # torch.Size([1, 48, 96, 96])
83
+ # torch.Size([1, 96, 48, 48])
84
+ # torch.Size([1, 192, 24, 24])
85
+ # torch.Size([1, 960, 12, 12])
86
+
87
+ print(o.shape)
88
+ ```
89
+
90
+ ### Image Embeddings
91
+ ```python
92
+ from urllib.request import urlopen
93
+ from PIL import Image
94
+ import timm
95
+
96
+ img = Image.open(urlopen(
97
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
98
+ ))
99
+
100
+ model = timm.create_model(
101
+ 'mobilenetv4_conv_large.e600_r384_in1k',
102
+ pretrained=True,
103
+ num_classes=0, # remove classifier nn.Linear
104
+ )
105
+ model = model.eval()
106
+
107
+ # get model specific transforms (normalization, resize)
108
+ data_config = timm.data.resolve_model_data_config(model)
109
+ transforms = timm.data.create_transform(**data_config, is_training=False)
110
+
111
+ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
112
+
113
+ # or equivalently (without needing to set num_classes=0)
114
+
115
+ output = model.forward_features(transforms(img).unsqueeze(0))
116
+ # output is unpooled, a (1, 960, 12, 12) shaped tensor
117
+
118
+ output = model.forward_head(output, pre_logits=True)
119
+ # output is a (1, num_features) shaped tensor
120
+ ```
121
+
122
+ ## Model Comparison
123
+ ### By Top-1
124
+
125
+ | model |top1 |top1_err|top5 |top5_err|param_count|img_size|
126
+ |--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------|
127
+ | [mobilenetv4_conv_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_large.e600_r384_in1k) |83.392|16.608 |96.622 |3.378 |32.59 |448 |
128
+ | [mobilenetv4_conv_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_large.e600_r384_in1k) |82.952|17.048 |96.266 |3.734 |32.59 |384 |
129
+ | [mobilenetv4_conv_large.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_large.e500_r256_in1k) |82.674|17.326 |96.31 |3.69 |32.59 |320 |
130
+ | [mobilenetv4_conv_large.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_large.e500_r256_in1k) |81.862|18.138 |95.69 |4.31 |32.59 |256 |
131
+ | [mobilenetv4_hybrid_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e500_r224_in1k) |81.276|18.724 |95.742|4.258 |11.07 |256 |
132
+ | [mobilenetv4_conv_medium.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r256_in1k) |80.858|19.142 |95.768|4.232 |9.72 |320 |
133
+ | [mobilenetv4_hybrid_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e500_r224_in1k) |80.442|19.558 |95.38 |4.62 |11.07 |224 |
134
+ | [mobilenetv4_conv_blur_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_blur_medium.e500_r224_in1k) |80.142|19.858 |95.298|4.702 |9.72 |256 |
135
+ | [mobilenetv4_conv_medium.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r256_in1k) |79.928|20.072 |95.184|4.816 |9.72 |256 |
136
+ | [mobilenetv4_conv_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r224_in1k) |79.808|20.192 |95.186|4.814 |9.72 |256 |
137
+ | [mobilenetv4_conv_blur_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_blur_medium.e500_r224_in1k) |79.438|20.562 |94.932|5.068 |9.72 |224 |
138
+ | [mobilenetv4_conv_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r224_in1k) |79.094|20.906 |94.77 |5.23 |9.72 |224 |
139
+ | [mobilenetv4_conv_small.e1200_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e1200_r224_in1k) |74.292|25.708 |92.116|7.884 |3.77 |256 |
140
+ | [mobilenetv4_conv_small.e1200_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e1200_r224_in1k) |73.454|26.546 |91.34 |8.66 |3.77 |224 |
141
+
142
+ ## Citation
143
+ ```bibtex
144
+ @article{qin2024mobilenetv4,
145
+ title={MobileNetV4-Universal Models for the Mobile Ecosystem},
146
+ author={Qin, Danfeng and Leichner, Chas and Delakis, Manolis and Fornoni, Marco and Luo, Shixin and Yang, Fan and Wang, Weijun and Banbury, Colby and Ye, Chengxi and Akin, Berkin and others},
147
+ journal={arXiv preprint arXiv:2404.10518},
148
+ year={2024}
149
+ }
150
+ ```
151
+ ```bibtex
152
+ @misc{rw2019timm,
153
+ author = {Ross Wightman},
154
+ title = {PyTorch Image Models},
155
+ year = {2019},
156
+ publisher = {GitHub},
157
+ journal = {GitHub repository},
158
+ doi = {10.5281/zenodo.4414861},
159
+ howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
160
+ }
161
+ ```
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architecture": "mobilenetv4_conv_large",
3
+ "num_classes": 1000,
4
+ "num_features": 960,
5
+ "pretrained_cfg": {
6
+ "tag": "e600_r384_in1k",
7
+ "custom_load": false,
8
+ "input_size": [
9
+ 3,
10
+ 384,
11
+ 384
12
+ ],
13
+ "test_input_size": [
14
+ 3,
15
+ 448,
16
+ 448
17
+ ],
18
+ "fixed_input_size": false,
19
+ "interpolation": "bicubic",
20
+ "crop_pct": 0.95,
21
+ "test_crop_pct": 1.0,
22
+ "crop_mode": "center",
23
+ "mean": [
24
+ 0.485,
25
+ 0.456,
26
+ 0.406
27
+ ],
28
+ "std": [
29
+ 0.229,
30
+ 0.224,
31
+ 0.225
32
+ ],
33
+ "num_classes": 1000,
34
+ "pool_size": [
35
+ 12,
36
+ 12
37
+ ],
38
+ "first_conv": "conv_stem",
39
+ "classifier": "classifier"
40
+ }
41
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7e2c1035dec14ac89c325183211eee5b593ad04d51625f22db5cdd8f3054ca5
3
+ size 131022456
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14098c0d04f1b12fdabb6f6831c2e782792516995061d8771fd8e7486d6e52c4
3
+ size 131181986