--- license: apache-2.0 library_name: timm tags: - image-classification - timm datasets: - imagenet-1k --- # Model card for levit_128.fb_dist_in1k A LeViT image classification model using convolutional mode (using nn.Conv2d and nn.BatchNorm2d). Pretrained on ImageNet-1k using distillation by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 9.2 - GMACs: 0.4 - Activations (M): 2.7 - Image size: 224 x 224 - **Papers:** - LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference: https://arxiv.org/abs/2104.01136 - **Original:** https://github.com/facebookresearch/LeViT - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model('levit_128.fb_dist_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'levit_128.fb_dist_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled (ie.e a (batch_size, num_features, H, W) tensor output = model.forward_head(output, pre_logits=True) # output is (batch_size, num_features) tensor ``` ## Model Comparison |model |top1 |top5 |param_count|img_size| |-----------------------------------|------|------|-----------|--------| |levit_384.fb_dist_in1k |82.596|96.012|39.13 |224 | |levit_conv_384.fb_dist_in1k |82.596|96.012|39.13 |224 | |levit_256.fb_dist_in1k |81.512|95.48 |18.89 |224 | |levit_conv_256.fb_dist_in1k |81.512|95.48 |18.89 |224 | |levit_conv_192.fb_dist_in1k |79.86 |94.792|10.95 |224 | |levit_192.fb_dist_in1k |79.858|94.792|10.95 |224 | |levit_128.fb_dist_in1k |78.474|94.014|9.21 |224 | |levit_conv_128.fb_dist_in1k |78.474|94.02 |9.21 |224 | |levit_128s.fb_dist_in1k |76.534|92.864|7.78 |224 | |levit_conv_128s.fb_dist_in1k |76.532|92.864|7.78 |224 | ## Citation ```bibtex @InProceedings{Graham_2021_ICCV, author = {Graham, Benjamin and El-Nouby, Alaaeldin and Touvron, Hugo and Stock, Pierre and Joulin, Armand and Jegou, Herve and Douze, Matthijs}, title = {LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference}, booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, month = {October}, year = {2021}, pages = {12259-12269} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ```