timm
/

Image Classification
timm
PyTorch
Safetensors
Transformers
File size: 21,440 Bytes
53ef213
 
 
 
 
10ef87c
 
 
53ef213
10ef87c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
---
tags:
- image-classification
- timm
library_tag: timm
license: apache-2.0
datasets:
- imagenet-1k
---
# Model card for convnext_atto.d2_in1k

A ConvNeXt image classification model. Trained in `timm` on ImageNet-1k by Ross Wightman.


## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
  - Params (M): 3.7
  - GMACs: 0.6
  - Activations (M): 3.8
  - Image size: 224 x 224
- **Papers:**
  - A ConvNet for the 2020s: https://arxiv.org/abs/2201.03545
- **Original:** https://github.com/rwightman/pytorch-image-models
- **Dataset:** ImageNet-1k

## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(
    urlopen('https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))

model = timm.create_model('convnext_atto.d2_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```

### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(
    urlopen('https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))

model = timm.create_model(
    'convnext_atto.d2_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g. for convnext_base: 
    #  torch.Size([1, 128, 56, 56])
    #  torch.Size([1, 256, 28, 28])
    #  torch.Size([1, 512, 14, 14])
    #  torch.Size([1, 1024, 7, 7]) 
    print(o.shape)
```

### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(
    urlopen('https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))

model = timm.create_model(
    'convnext_atto.d2_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled (ie.e a (batch_size, num_features, H, W) tensor

output = model.forward_head(output, pre_logits=True)
# output is (batch_size, num_features) tensor
```

## Model Comparison
### By Top-1
All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP.

|model                                         |top1  |top5  |img_size|param_count|gmacs |macts |samples_per_sec|batch_size|
|----------------------------------------------|------|------|--------|-----------|------|------|---------------|----------|
|[convnextv2_huge.fcmae_ft_in22k_in1k_512](https://huggingface.co./timm/convnextv2_huge.fcmae_ft_in22k_in1k_512)|88.848|98.742|512     |660.29     |600.81|413.07|28.58          |48        |
|[convnextv2_huge.fcmae_ft_in22k_in1k_384](https://huggingface.co./timm/convnextv2_huge.fcmae_ft_in22k_in1k_384)|88.668|98.738|384     |660.29     |337.96|232.35|50.56          |64        |
|[convnextv2_large.fcmae_ft_in22k_in1k_384](https://huggingface.co./timm/convnextv2_large.fcmae_ft_in22k_in1k_384)|88.196|98.532|384     |197.96     |101.1 |126.74|128.94         |128       |
|[convnext_xlarge.fb_in22k_ft_in1k_384](https://huggingface.co./timm/convnext_xlarge.fb_in22k_ft_in1k_384)|87.75 |98.556|384     |350.2      |179.2 |168.99|124.85         |192       |
|[convnextv2_base.fcmae_ft_in22k_in1k_384](https://huggingface.co./timm/convnextv2_base.fcmae_ft_in22k_in1k_384)|87.646|98.422|384     |88.72      |45.21 |84.49 |209.51         |256       |
|[convnext_large.fb_in22k_ft_in1k_384](https://huggingface.co./timm/convnext_large.fb_in22k_ft_in1k_384)|87.476|98.382|384     |197.77     |101.1 |126.74|194.66         |256       |
|[convnext_large_mlp.clip_laion2b_augreg_ft_in1k](https://huggingface.co./timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k)|87.344|98.218|256     |200.13     |44.94 |56.33 |438.08         |256       |
|[convnextv2_large.fcmae_ft_in22k_in1k](https://huggingface.co./timm/convnextv2_large.fcmae_ft_in22k_in1k)|87.26 |98.248|224     |197.96     |34.4  |43.13 |376.84         |256       |
|[convnext_xlarge.fb_in22k_ft_in1k](https://huggingface.co./timm/convnext_xlarge.fb_in22k_ft_in1k)|87.002|98.208|224     |350.2      |60.98 |57.5  |368.01         |256       |
|[convnext_base.fb_in22k_ft_in1k_384](https://huggingface.co./timm/convnext_base.fb_in22k_ft_in1k_384)|86.796|98.264|384     |88.59      |45.21 |84.49 |366.54         |256       |
|[convnextv2_base.fcmae_ft_in22k_in1k](https://huggingface.co./timm/convnextv2_base.fcmae_ft_in22k_in1k)|86.74 |98.022|224     |88.72      |15.38 |28.75 |624.23         |256       |
|[convnext_large.fb_in22k_ft_in1k](https://huggingface.co./timm/convnext_large.fb_in22k_ft_in1k)|86.636|98.028|224     |197.77     |34.4  |43.13 |581.43         |256       |
|[convnext_base.clip_laiona_augreg_ft_in1k_384](https://huggingface.co./timm/convnext_base.clip_laiona_augreg_ft_in1k_384)|86.504|97.97 |384     |88.59      |45.21 |84.49 |368.14         |256       |
|[convnextv2_huge.fcmae_ft_in1k](https://huggingface.co./timm/convnextv2_huge.fcmae_ft_in1k)|86.256|97.75 |224     |660.29     |115.0 |79.07 |154.72         |256       |
|[convnext_small.in12k_ft_in1k_384](https://huggingface.co./timm/convnext_small.in12k_ft_in1k_384)|86.182|97.92 |384     |50.22      |25.58 |63.37 |516.19         |256       |
|[convnext_base.clip_laion2b_augreg_ft_in1k](https://huggingface.co./timm/convnext_base.clip_laion2b_augreg_ft_in1k)|86.154|97.68 |256     |88.59      |20.09 |37.55 |819.86         |256       |
|[convnext_base.fb_in22k_ft_in1k](https://huggingface.co./timm/convnext_base.fb_in22k_ft_in1k)|85.822|97.866|224     |88.59      |15.38 |28.75 |1037.66        |256       |
|[convnext_small.fb_in22k_ft_in1k_384](https://huggingface.co./timm/convnext_small.fb_in22k_ft_in1k_384)|85.778|97.886|384     |50.22      |25.58 |63.37 |518.95         |256       |
|[convnextv2_large.fcmae_ft_in1k](https://huggingface.co./timm/convnextv2_large.fcmae_ft_in1k)|85.742|97.584|224     |197.96     |34.4  |43.13 |375.23         |256       |
|[convnext_small.in12k_ft_in1k](https://huggingface.co./timm/convnext_small.in12k_ft_in1k)|85.174|97.506|224     |50.22      |8.71  |21.56 |1474.31        |256       |
|[convnext_tiny.in12k_ft_in1k_384](https://huggingface.co./timm/convnext_tiny.in12k_ft_in1k_384)|85.118|97.608|384     |28.59      |13.14 |39.48 |856.76         |256       |
|[convnextv2_tiny.fcmae_ft_in22k_in1k_384](https://huggingface.co./timm/convnextv2_tiny.fcmae_ft_in22k_in1k_384)|85.112|97.63 |384     |28.64      |13.14 |39.48 |491.32         |256       |
|[convnextv2_base.fcmae_ft_in1k](https://huggingface.co./timm/convnextv2_base.fcmae_ft_in1k)|84.874|97.09 |224     |88.72      |15.38 |28.75 |625.33         |256       |
|[convnext_small.fb_in22k_ft_in1k](https://huggingface.co./timm/convnext_small.fb_in22k_ft_in1k)|84.562|97.394|224     |50.22      |8.71  |21.56 |1478.29        |256       |
|[convnext_large.fb_in1k](https://huggingface.co./timm/convnext_large.fb_in1k)|84.282|96.892|224     |197.77     |34.4  |43.13 |584.28         |256       |
|[convnext_tiny.in12k_ft_in1k](https://huggingface.co./timm/convnext_tiny.in12k_ft_in1k)|84.186|97.124|224     |28.59      |4.47  |13.44 |2433.7         |256       |
|[convnext_tiny.fb_in22k_ft_in1k_384](https://huggingface.co./timm/convnext_tiny.fb_in22k_ft_in1k_384)|84.084|97.14 |384     |28.59      |13.14 |39.48 |862.95         |256       |
|[convnextv2_tiny.fcmae_ft_in22k_in1k](https://huggingface.co./timm/convnextv2_tiny.fcmae_ft_in22k_in1k)|83.894|96.964|224     |28.64      |4.47  |13.44 |1452.72        |256       |
|[convnext_base.fb_in1k](https://huggingface.co./timm/convnext_base.fb_in1k)|83.82 |96.746|224     |88.59      |15.38 |28.75 |1054.0         |256       |
|[convnextv2_nano.fcmae_ft_in22k_in1k_384](https://huggingface.co./timm/convnextv2_nano.fcmae_ft_in22k_in1k_384)|83.37 |96.742|384     |15.62      |7.22  |24.61 |801.72         |256       |
|[convnext_small.fb_in1k](https://huggingface.co./timm/convnext_small.fb_in1k)|83.142|96.434|224     |50.22      |8.71  |21.56 |1464.0         |256       |
|[convnextv2_tiny.fcmae_ft_in1k](https://huggingface.co./timm/convnextv2_tiny.fcmae_ft_in1k)|82.92 |96.284|224     |28.64      |4.47  |13.44 |1425.62        |256       |
|[convnext_tiny.fb_in22k_ft_in1k](https://huggingface.co./timm/convnext_tiny.fb_in22k_ft_in1k)|82.898|96.616|224     |28.59      |4.47  |13.44 |2480.88        |256       |
|[convnext_nano.in12k_ft_in1k](https://huggingface.co./timm/convnext_nano.in12k_ft_in1k)|82.282|96.344|224     |15.59      |2.46  |8.37  |3926.52        |256       |
|[convnext_tiny_hnf.a2h_in1k](https://huggingface.co./timm/convnext_tiny_hnf.a2h_in1k)|82.216|95.852|224     |28.59      |4.47  |13.44 |2529.75        |256       |
|[convnext_tiny.fb_in1k](https://huggingface.co./timm/convnext_tiny.fb_in1k)|82.066|95.854|224     |28.59      |4.47  |13.44 |2346.26        |256       |
|[convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co./timm/convnextv2_nano.fcmae_ft_in22k_in1k)|82.03 |96.166|224     |15.62      |2.46  |8.37  |2300.18        |256       |
|[convnextv2_nano.fcmae_ft_in1k](https://huggingface.co./timm/convnextv2_nano.fcmae_ft_in1k)|81.83 |95.738|224     |15.62      |2.46  |8.37  |2321.48        |256       |
|[convnext_nano_ols.d1h_in1k](https://huggingface.co./timm/convnext_nano_ols.d1h_in1k)|80.866|95.246|224     |15.65      |2.65  |9.38  |3523.85        |256       |
|[convnext_nano.d1h_in1k](https://huggingface.co./timm/convnext_nano.d1h_in1k)|80.768|95.334|224     |15.59      |2.46  |8.37  |3915.58        |256       |
|[convnextv2_pico.fcmae_ft_in1k](https://huggingface.co./timm/convnextv2_pico.fcmae_ft_in1k)|80.304|95.072|224     |9.07       |1.37  |6.1   |3274.57        |256       |
|[convnext_pico.d1_in1k](https://huggingface.co./timm/convnext_pico.d1_in1k)|79.526|94.558|224     |9.05       |1.37  |6.1   |5686.88        |256       |
|[convnext_pico_ols.d1_in1k](https://huggingface.co./timm/convnext_pico_ols.d1_in1k)|79.522|94.692|224     |9.06       |1.43  |6.5   |5422.46        |256       |
|[convnextv2_femto.fcmae_ft_in1k](https://huggingface.co./timm/convnextv2_femto.fcmae_ft_in1k)|78.488|93.98 |224     |5.23       |0.79  |4.57  |4264.2         |256       |
|[convnext_femto_ols.d1_in1k](https://huggingface.co./timm/convnext_femto_ols.d1_in1k)|77.86 |93.83 |224     |5.23       |0.82  |4.87  |6910.6         |256       |
|[convnext_femto.d1_in1k](https://huggingface.co./timm/convnext_femto.d1_in1k)|77.454|93.68 |224     |5.22       |0.79  |4.57  |7189.92        |256       |
|[convnextv2_atto.fcmae_ft_in1k](https://huggingface.co./timm/convnextv2_atto.fcmae_ft_in1k)|76.664|93.044|224     |3.71       |0.55  |3.81  |4728.91        |256       |
|[convnext_atto_ols.a2_in1k](https://huggingface.co./timm/convnext_atto_ols.a2_in1k)|75.88 |92.846|224     |3.7        |0.58  |4.11  |7963.16        |256       |
|[convnext_atto.d2_in1k](https://huggingface.co./timm/convnext_atto.d2_in1k)|75.664|92.9  |224     |3.7        |0.55  |3.81  |8439.22        |256       |

### By Throughput (samples / sec)
All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP.

|model                                         |top1  |top5  |img_size|param_count|gmacs |macts |samples_per_sec|batch_size|
|----------------------------------------------|------|------|--------|-----------|------|------|---------------|----------|
|[convnext_atto.d2_in1k](https://huggingface.co./timm/convnext_atto.d2_in1k)|75.664|92.9  |224     |3.7        |0.55  |3.81  |8439.22        |256       |
|[convnext_atto_ols.a2_in1k](https://huggingface.co./timm/convnext_atto_ols.a2_in1k)|75.88 |92.846|224     |3.7        |0.58  |4.11  |7963.16        |256       |
|[convnext_femto.d1_in1k](https://huggingface.co./timm/convnext_femto.d1_in1k)|77.454|93.68 |224     |5.22       |0.79  |4.57  |7189.92        |256       |
|[convnext_femto_ols.d1_in1k](https://huggingface.co./timm/convnext_femto_ols.d1_in1k)|77.86 |93.83 |224     |5.23       |0.82  |4.87  |6910.6         |256       |
|[convnext_pico.d1_in1k](https://huggingface.co./timm/convnext_pico.d1_in1k)|79.526|94.558|224     |9.05       |1.37  |6.1   |5686.88        |256       |
|[convnext_pico_ols.d1_in1k](https://huggingface.co./timm/convnext_pico_ols.d1_in1k)|79.522|94.692|224     |9.06       |1.43  |6.5   |5422.46        |256       |
|[convnextv2_atto.fcmae_ft_in1k](https://huggingface.co./timm/convnextv2_atto.fcmae_ft_in1k)|76.664|93.044|224     |3.71       |0.55  |3.81  |4728.91        |256       |
|[convnextv2_femto.fcmae_ft_in1k](https://huggingface.co./timm/convnextv2_femto.fcmae_ft_in1k)|78.488|93.98 |224     |5.23       |0.79  |4.57  |4264.2         |256       |
|[convnext_nano.in12k_ft_in1k](https://huggingface.co./timm/convnext_nano.in12k_ft_in1k)|82.282|96.344|224     |15.59      |2.46  |8.37  |3926.52        |256       |
|[convnext_nano.d1h_in1k](https://huggingface.co./timm/convnext_nano.d1h_in1k)|80.768|95.334|224     |15.59      |2.46  |8.37  |3915.58        |256       |
|[convnext_nano_ols.d1h_in1k](https://huggingface.co./timm/convnext_nano_ols.d1h_in1k)|80.866|95.246|224     |15.65      |2.65  |9.38  |3523.85        |256       |
|[convnextv2_pico.fcmae_ft_in1k](https://huggingface.co./timm/convnextv2_pico.fcmae_ft_in1k)|80.304|95.072|224     |9.07       |1.37  |6.1   |3274.57        |256       |
|[convnext_tiny_hnf.a2h_in1k](https://huggingface.co./timm/convnext_tiny_hnf.a2h_in1k)|82.216|95.852|224     |28.59      |4.47  |13.44 |2529.75        |256       |
|[convnext_tiny.fb_in22k_ft_in1k](https://huggingface.co./timm/convnext_tiny.fb_in22k_ft_in1k)|82.898|96.616|224     |28.59      |4.47  |13.44 |2480.88        |256       |
|[convnext_tiny.in12k_ft_in1k](https://huggingface.co./timm/convnext_tiny.in12k_ft_in1k)|84.186|97.124|224     |28.59      |4.47  |13.44 |2433.7         |256       |
|[convnext_tiny.fb_in1k](https://huggingface.co./timm/convnext_tiny.fb_in1k)|82.066|95.854|224     |28.59      |4.47  |13.44 |2346.26        |256       |
|[convnextv2_nano.fcmae_ft_in1k](https://huggingface.co./timm/convnextv2_nano.fcmae_ft_in1k)|81.83 |95.738|224     |15.62      |2.46  |8.37  |2321.48        |256       |
|[convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co./timm/convnextv2_nano.fcmae_ft_in22k_in1k)|82.03 |96.166|224     |15.62      |2.46  |8.37  |2300.18        |256       |
|[convnext_small.fb_in22k_ft_in1k](https://huggingface.co./timm/convnext_small.fb_in22k_ft_in1k)|84.562|97.394|224     |50.22      |8.71  |21.56 |1478.29        |256       |
|[convnext_small.in12k_ft_in1k](https://huggingface.co./timm/convnext_small.in12k_ft_in1k)|85.174|97.506|224     |50.22      |8.71  |21.56 |1474.31        |256       |
|[convnext_small.fb_in1k](https://huggingface.co./timm/convnext_small.fb_in1k)|83.142|96.434|224     |50.22      |8.71  |21.56 |1464.0         |256       |
|[convnextv2_tiny.fcmae_ft_in22k_in1k](https://huggingface.co./timm/convnextv2_tiny.fcmae_ft_in22k_in1k)|83.894|96.964|224     |28.64      |4.47  |13.44 |1452.72        |256       |
|[convnextv2_tiny.fcmae_ft_in1k](https://huggingface.co./timm/convnextv2_tiny.fcmae_ft_in1k)|82.92 |96.284|224     |28.64      |4.47  |13.44 |1425.62        |256       |
|[convnext_base.fb_in1k](https://huggingface.co./timm/convnext_base.fb_in1k)|83.82 |96.746|224     |88.59      |15.38 |28.75 |1054.0         |256       |
|[convnext_base.fb_in22k_ft_in1k](https://huggingface.co./timm/convnext_base.fb_in22k_ft_in1k)|85.822|97.866|224     |88.59      |15.38 |28.75 |1037.66        |256       |
|[convnext_tiny.fb_in22k_ft_in1k_384](https://huggingface.co./timm/convnext_tiny.fb_in22k_ft_in1k_384)|84.084|97.14 |384     |28.59      |13.14 |39.48 |862.95         |256       |
|[convnext_tiny.in12k_ft_in1k_384](https://huggingface.co./timm/convnext_tiny.in12k_ft_in1k_384)|85.118|97.608|384     |28.59      |13.14 |39.48 |856.76         |256       |
|[convnext_base.clip_laion2b_augreg_ft_in1k](https://huggingface.co./timm/convnext_base.clip_laion2b_augreg_ft_in1k)|86.154|97.68 |256     |88.59      |20.09 |37.55 |819.86         |256       |
|[convnextv2_nano.fcmae_ft_in22k_in1k_384](https://huggingface.co./timm/convnextv2_nano.fcmae_ft_in22k_in1k_384)|83.37 |96.742|384     |15.62      |7.22  |24.61 |801.72         |256       |
|[convnextv2_base.fcmae_ft_in1k](https://huggingface.co./timm/convnextv2_base.fcmae_ft_in1k)|84.874|97.09 |224     |88.72      |15.38 |28.75 |625.33         |256       |
|[convnextv2_base.fcmae_ft_in22k_in1k](https://huggingface.co./timm/convnextv2_base.fcmae_ft_in22k_in1k)|86.74 |98.022|224     |88.72      |15.38 |28.75 |624.23         |256       |
|[convnext_large.fb_in1k](https://huggingface.co./timm/convnext_large.fb_in1k)|84.282|96.892|224     |197.77     |34.4  |43.13 |584.28         |256       |
|[convnext_large.fb_in22k_ft_in1k](https://huggingface.co./timm/convnext_large.fb_in22k_ft_in1k)|86.636|98.028|224     |197.77     |34.4  |43.13 |581.43         |256       |
|[convnext_small.fb_in22k_ft_in1k_384](https://huggingface.co./timm/convnext_small.fb_in22k_ft_in1k_384)|85.778|97.886|384     |50.22      |25.58 |63.37 |518.95         |256       |
|[convnext_small.in12k_ft_in1k_384](https://huggingface.co./timm/convnext_small.in12k_ft_in1k_384)|86.182|97.92 |384     |50.22      |25.58 |63.37 |516.19         |256       |
|[convnextv2_tiny.fcmae_ft_in22k_in1k_384](https://huggingface.co./timm/convnextv2_tiny.fcmae_ft_in22k_in1k_384)|85.112|97.63 |384     |28.64      |13.14 |39.48 |491.32         |256       |
|[convnext_large_mlp.clip_laion2b_augreg_ft_in1k](https://huggingface.co./timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k)|87.344|98.218|256     |200.13     |44.94 |56.33 |438.08         |256       |
|[convnextv2_large.fcmae_ft_in22k_in1k](https://huggingface.co./timm/convnextv2_large.fcmae_ft_in22k_in1k)|87.26 |98.248|224     |197.96     |34.4  |43.13 |376.84         |256       |
|[convnextv2_large.fcmae_ft_in1k](https://huggingface.co./timm/convnextv2_large.fcmae_ft_in1k)|85.742|97.584|224     |197.96     |34.4  |43.13 |375.23         |256       |
|[convnext_base.clip_laiona_augreg_ft_in1k_384](https://huggingface.co./timm/convnext_base.clip_laiona_augreg_ft_in1k_384)|86.504|97.97 |384     |88.59      |45.21 |84.49 |368.14         |256       |
|[convnext_xlarge.fb_in22k_ft_in1k](https://huggingface.co./timm/convnext_xlarge.fb_in22k_ft_in1k)|87.002|98.208|224     |350.2      |60.98 |57.5  |368.01         |256       |
|[convnext_base.fb_in22k_ft_in1k_384](https://huggingface.co./timm/convnext_base.fb_in22k_ft_in1k_384)|86.796|98.264|384     |88.59      |45.21 |84.49 |366.54         |256       |
|[convnextv2_base.fcmae_ft_in22k_in1k_384](https://huggingface.co./timm/convnextv2_base.fcmae_ft_in22k_in1k_384)|87.646|98.422|384     |88.72      |45.21 |84.49 |209.51         |256       |
|[convnext_large.fb_in22k_ft_in1k_384](https://huggingface.co./timm/convnext_large.fb_in22k_ft_in1k_384)|87.476|98.382|384     |197.77     |101.1 |126.74|194.66         |256       |
|[convnextv2_huge.fcmae_ft_in1k](https://huggingface.co./timm/convnextv2_huge.fcmae_ft_in1k)|86.256|97.75 |224     |660.29     |115.0 |79.07 |154.72         |256       |
|[convnextv2_large.fcmae_ft_in22k_in1k_384](https://huggingface.co./timm/convnextv2_large.fcmae_ft_in22k_in1k_384)|88.196|98.532|384     |197.96     |101.1 |126.74|128.94         |128       |
|[convnext_xlarge.fb_in22k_ft_in1k_384](https://huggingface.co./timm/convnext_xlarge.fb_in22k_ft_in1k_384)|87.75 |98.556|384     |350.2      |179.2 |168.99|124.85         |192       |
|[convnextv2_huge.fcmae_ft_in22k_in1k_384](https://huggingface.co./timm/convnextv2_huge.fcmae_ft_in22k_in1k_384)|88.668|98.738|384     |660.29     |337.96|232.35|50.56          |64        |
|[convnextv2_huge.fcmae_ft_in22k_in1k_512](https://huggingface.co./timm/convnextv2_huge.fcmae_ft_in22k_in1k_512)|88.848|98.742|512     |660.29     |600.81|413.07|28.58          |48        |

## Citation
```bibtex
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
```
```bibtex
@article{liu2022convnet,
  author  = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie},
  title   = {A ConvNet for the 2020s},
  journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year    = {2022},
}
```