--- license: apache-2.0 base_model: Sandiago21/distilhubert-finetuned-gtzan tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.85 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [Sandiago21/distilhubert-finetuned-gtzan](https://huggingface.co./Sandiago21/distilhubert-finetuned-gtzan) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.9021 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2617 | 1.0 | 57 | 0.8101 | 0.76 | | 0.3005 | 2.0 | 114 | 0.8589 | 0.82 | | 0.0123 | 3.0 | 171 | 1.0596 | 0.8 | | 0.0141 | 4.0 | 228 | 1.0238 | 0.81 | | 0.0047 | 5.0 | 285 | 0.8953 | 0.83 | | 0.0889 | 6.0 | 342 | 0.8765 | 0.86 | | 0.0482 | 7.0 | 399 | 1.1115 | 0.83 | | 0.0013 | 8.0 | 456 | 1.0884 | 0.84 | | 0.0009 | 9.0 | 513 | 1.0055 | 0.85 | | 0.0008 | 10.0 | 570 | 0.9021 | 0.85 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3