update model card README.md
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -59,22 +59,27 @@ The following hyperparameters were used during training:
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
-
- num_epochs:
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
-
| 1.
|
69 |
-
| 1.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
|
80 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.83
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.8934
|
36 |
+
- Accuracy: 0.83
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- num_epochs: 15
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
+
| 1.9361 | 1.0 | 113 | 1.7009 | 0.47 |
|
69 |
+
| 1.2014 | 2.0 | 226 | 1.0356 | 0.68 |
|
70 |
+
| 0.943 | 3.0 | 339 | 0.8529 | 0.76 |
|
71 |
+
| 0.6362 | 4.0 | 452 | 0.9040 | 0.72 |
|
72 |
+
| 0.4754 | 5.0 | 565 | 0.7102 | 0.79 |
|
73 |
+
| 0.4526 | 6.0 | 678 | 0.6811 | 0.8 |
|
74 |
+
| 0.2139 | 7.0 | 791 | 0.7872 | 0.83 |
|
75 |
+
| 0.0133 | 8.0 | 904 | 0.8736 | 0.83 |
|
76 |
+
| 0.0089 | 9.0 | 1017 | 0.8696 | 0.82 |
|
77 |
+
| 0.0639 | 10.0 | 1130 | 0.9064 | 0.85 |
|
78 |
+
| 0.0026 | 11.0 | 1243 | 0.9165 | 0.82 |
|
79 |
+
| 0.1601 | 12.0 | 1356 | 0.8257 | 0.86 |
|
80 |
+
| 0.0017 | 13.0 | 1469 | 0.8388 | 0.85 |
|
81 |
+
| 0.0018 | 14.0 | 1582 | 0.8639 | 0.84 |
|
82 |
+
| 0.0017 | 15.0 | 1695 | 0.8934 | 0.83 |
|
83 |
|
84 |
|
85 |
### Framework versions
|