Changes in modelling_RW.py to be able to handle past_key_values for faster model generations
eca0280
# port of models described in RW | |
# We use the bloom model as a starting point for these model. | |
# Please refer to the bloom models for usage instructions. | |
import math | |
import warnings | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss | |
from torch.nn import functional as F | |
import pdb | |
import os | |
import pickle | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPastAndCrossAttentions, | |
CausalLMOutputWithCrossAttentions, | |
QuestionAnsweringModelOutput, | |
SequenceClassifierOutputWithPast, | |
TokenClassifierOutput, | |
) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import logging | |
from .configuration_RW import RWConfig | |
logger = logging.get_logger(__name__) | |
# NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations. | |
# In order not to degrade the quality of our HF-port, we keep these characteristics in the final model. | |
class Linear(nn.Linear): | |
def forward(self, input: torch.Tensor) -> torch.Tensor: | |
ret = input @ self.weight.T | |
if self.bias is None: | |
return ret | |
else: | |
return ret + self.bias | |
from einops import rearrange | |
# rotary pos emb helpers (torch.jit.script does not seem to support staticmethod...) | |
def rotate_half(x): | |
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in torch < 1.8.0 | |
class RotaryEmbedding(torch.nn.Module): | |
"""Implementation of RotaryEmbedding from GPT-NeoX. | |
This implementation is design to operate on queries and keys that are compatible with | |
[batch_size, n_heads_per_partition, seq_len, head_dim] (e.g. MinGPTAttention format). | |
""" | |
def __init__( | |
self, | |
head_dim: int, | |
base=10000, | |
): | |
super().__init__() | |
inv_freq = 1.0 / (base ** (torch.arange(0, head_dim, 2).float() / head_dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
self.head_dim = head_dim | |
self.seq_len_cached = None | |
self.batch_size_cached = None | |
self.cos_cached: torch.Tensor | None = None | |
self.sin_cached: torch.Tensor | None = None | |
def cos_sin( | |
self, | |
seq_len: int, | |
device="cuda", | |
dtype=torch.bfloat16, | |
) -> torch.Tensor: | |
if seq_len != self.seq_len_cached: | |
self.seq_len_cached = seq_len | |
t = torch.arange(seq_len, device=device).type_as(self.inv_freq) | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
emb = torch.cat((freqs, freqs), dim=-1).to(device) | |
if dtype in [torch.float16, torch.bfloat16]: | |
emb = emb.float() | |
self.cos_cached = emb.cos()[None, :, :] | |
self.sin_cached = emb.sin()[None, :, :] | |
self.cos_cached = self.cos_cached.type(dtype) | |
self.sin_cached = self.sin_cached.type(dtype) | |
return self.cos_cached, self.sin_cached | |
def forward(self, q, k, past_seq_length=None): | |
if past_seq_length == None : | |
batch, seq_len, head_dim = q.shape | |
else : | |
# print("past_seq_length", past_seq_length) | |
batch, input_seq_len, head_dim = q.shape | |
seq_len = past_seq_length + input_seq_len | |
cos, sin = self.cos_sin(seq_len, q.device, q.dtype) | |
if past_seq_length != None : | |
return (q * cos[:, past_seq_length:, :]) + (rotate_half(q) * sin[:, past_seq_length:, :]), (k * cos[:, past_seq_length:, :]) + (rotate_half(k) * sin[:, past_seq_length:, :]) | |
else : | |
return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin) | |
def _make_causal_mask( | |
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int | |
) -> torch.BoolTensor: | |
batch_size, target_length = input_ids_shape | |
mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device) | |
# ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround | |
seq_ids = torch.arange(target_length, device=device) | |
mask[:, past_key_values_length:] = seq_ids[:, None] >= seq_ids[None, :] | |
if past_key_values_length > 0: | |
mask[:, :past_key_values_length] = True | |
expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length) | |
return expanded_mask | |
def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: | |
batch_size, src_length = mask.shape | |
tgt_length = tgt_length if tgt_length is not None else src_length | |
expanded_mask = ~(mask[:, None, None, :].to(torch.bool)) | |
return expanded_mask.expand(batch_size, 1, tgt_length, src_length) | |
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: | |
batch_size, seq_length = attention_mask.shape | |
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) | |
base = torch.tensor( | |
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 | |
) | |
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32) | |
slopes = torch.pow(base, powers) | |
if closest_power_of_2 != num_heads: | |
extra_base = torch.tensor( | |
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 | |
) | |
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) | |
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32) | |
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) | |
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention | |
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length) | |
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length) | |
# => the query_length dimension will then be broadcasted correctly | |
# This is more or less identical to T5's relative position bias: | |
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527 | |
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] | |
alibi = slopes[..., None].bfloat16() * arange_tensor | |
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype) | |
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor: | |
out = F.dropout(x, p=prob, training=training) | |
out = residual + out | |
return out | |
def dump_value(name, tensor) : | |
with open("/home/purushottam/inspect_falcon/{}".format(name), "wb") as f : | |
pickle.dump(tensor, f) | |
class Attention(nn.Module): | |
def __init__(self, config: RWConfig): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.n_head | |
self.head_dim = self.hidden_size // self.num_heads | |
self.split_size = self.hidden_size | |
self.hidden_dropout = config.hidden_dropout | |
if self.head_dim * self.num_heads != self.hidden_size: | |
raise ValueError( | |
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" | |
f" {self.num_heads})." | |
) | |
self.maybe_rotary = RotaryEmbedding(config.head_dim) if config.rotary else lambda q, k: (q, k) | |
# Layer-wise attention scaling | |
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) | |
self.beta = self.inv_norm_factor | |
self.query_key_value = Linear( | |
self.hidden_size, | |
3 * self.hidden_size if not config.multi_query else (self.hidden_size + 2 * self.head_dim), | |
bias=config.bias, | |
) | |
self.multi_query = config.multi_query | |
self.dense = Linear(self.hidden_size, self.hidden_size, bias=config.bias) | |
self.attention_dropout = nn.Dropout(config.attention_dropout) | |
self.num_kv = config.n_head if not self.multi_query else 1 | |
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
""" | |
Split the last dimension into (num_heads, head_dim) without making any copies, results share same memory | |
storage as `fused_qkv` | |
Args: | |
fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim] | |
Returns: | |
query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim] | |
value: [batch_size, seq_length, num_heads, head_dim] | |
""" | |
if not self.multi_query: | |
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape | |
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim) | |
return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :] | |
else: | |
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape | |
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads + 2, self.head_dim) | |
return fused_qkv[..., :-2, :], fused_qkv[..., [-2], :], fused_qkv[..., [-1], :] | |
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor: | |
""" | |
Merge heads together over the last dimenstion | |
Args: | |
x: (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim] | |
Returns: | |
torch.tensor: [batch_size, seq_length, num_heads * head_dim] | |
""" | |
# What we want to achieve is: | |
# batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim | |
batch_size_and_num_heads, seq_length, _ = x.shape | |
batch_size = batch_size_and_num_heads // self.num_heads | |
# First view to decompose the batch size | |
# batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim | |
x = x.view(batch_size, self.num_heads, seq_length, self.head_dim) | |
# batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim | |
x = x.permute(0, 2, 1, 3) | |
# batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim | |
return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
alibi: torch.Tensor, | |
attention_mask: torch.Tensor, | |
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
use_cache: bool = False, | |
output_attentions: bool = False, | |
): | |
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] | |
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) | |
batch_size, q_length, _, _ = query_layer.shape | |
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim) | |
key_layer = key_layer.transpose(1, 2).reshape( | |
batch_size * self.num_kv, | |
q_length, | |
self.head_dim, | |
) | |
value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_kv, q_length, self.head_dim) | |
if layer_past is not None : | |
past_key, past_value = layer_past | |
past_kv_length = past_key.shape[2] | |
query_layer, key_layer = self.maybe_rotary(query_layer, key_layer, past_kv_length) | |
else : | |
query_layer, key_layer = self.maybe_rotary(query_layer, key_layer) | |
if layer_past is not None: | |
past_key, past_value = layer_past | |
past_key = past_key.permute(0, 2, 1) | |
key_layer = torch.cat((past_key, key_layer), dim=1) | |
value_layer = torch.cat((past_value, value_layer), dim=1) | |
_, kv_length, _ = key_layer.shape | |
if use_cache is True: | |
key_layer_permute = key_layer.permute(0, 2, 1) | |
present = (key_layer_permute, value_layer) | |
else: | |
present = None | |
if alibi is None: | |
query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim) | |
key_layer_ = key_layer.reshape(batch_size, self.num_kv, -1, self.head_dim) | |
value_layer_ = value_layer.reshape(batch_size, self.num_kv, -1, self.head_dim) | |
if attention_mask is not None : | |
attn_output = F.scaled_dot_product_attention( | |
query_layer_, key_layer_, value_layer_, attention_mask, 0.0, is_causal=False | |
) | |
else : | |
attn_output = F.scaled_dot_product_attention( | |
query_layer_, key_layer_, value_layer_, None, 0.0, is_causal=True | |
) | |
x = attn_output.view(batch_size, self.num_heads, q_length, self.head_dim) | |
x = x.permute(0, 2, 1, 3) | |
attn_output = x.reshape(batch_size, q_length, self.num_heads * self.head_dim) | |
output_tensor = self.dense(attn_output) | |
outputs = (output_tensor, present) | |
assert not output_attentions # not supported. | |
return outputs | |
else: | |
attention_mask_float = (attention_mask * 1.0).masked_fill(attention_mask, -1e9).to(torch.bfloat16) | |
matmul_result = query_layer @ key_layer.transpose(-1, -2) | |
# change view to [batch_size, num_heads, q_length, kv_length] | |
attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length) | |
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length] | |
input_dtype = attention_scores.dtype | |
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38` | |
if input_dtype == torch.float16 or input_dtype == torch.bfloat16: | |
attention_scores = attention_scores.to(torch.float32) | |
# attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min) | |
attention_probs = F.softmax( | |
(attention_scores + alibi) * self.inv_norm_factor + attention_mask_float, | |
dim=-1, | |
dtype=hidden_states.dtype, | |
) | |
# [batch_size, num_heads, q_length, kv_length] | |
attention_probs = self.attention_dropout(attention_probs) | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
# change view [batch_size x num_heads, q_length, kv_length] | |
attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length) | |
# matmul: [batch_size * num_heads, q_length, head_dim] | |
context_layer = attention_probs_reshaped @ value_layer | |
# change view [batch_size, num_heads, q_length, head_dim] | |
context_layer = self._merge_heads(context_layer) | |
output_tensor = self.dense(context_layer) | |
outputs = (output_tensor, present) | |
if output_attentions: | |
outputs += (attention_probs,) | |
return outputs | |
class MLP(nn.Module): | |
def __init__(self, config: RWConfig): | |
super().__init__() | |
hidden_size = config.hidden_size | |
self.dense_h_to_4h = Linear(hidden_size, 4 * hidden_size, bias=config.bias) | |
self.act = nn.GELU() | |
self.dense_4h_to_h = Linear(4 * hidden_size, hidden_size, bias=config.bias) | |
self.hidden_dropout = config.hidden_dropout | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.act(self.dense_h_to_4h(x)) | |
x = self.dense_4h_to_h(x) | |
return x | |
class DecoderLayer(nn.Module): | |
def __init__(self, config: RWConfig): | |
super().__init__() | |
hidden_size = config.hidden_size | |
self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
self.num_heads = config.n_head | |
self.self_attention = Attention(config) | |
if not config.parallel_attn: | |
# unused if parallel attn | |
self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
self.mlp = MLP(config) | |
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm | |
self.hidden_dropout = config.hidden_dropout | |
self.config = config | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
alibi: torch.Tensor, | |
attention_mask: torch.Tensor, | |
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
use_cache: bool = False, | |
output_attentions: bool = False, | |
): | |
layernorm_output = self.input_layernorm(hidden_states) | |
residual = hidden_states | |
# Self attention. | |
attn_outputs = self.self_attention( | |
layernorm_output, | |
layer_past=layer_past, | |
attention_mask=attention_mask, | |
alibi=alibi, | |
head_mask=head_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
attention_output = attn_outputs[0] | |
if not self.config.parallel_attn: | |
residual = dropout_add(attention_output, residual, self.config.attention_dropout, training=self.training) | |
layernorm_output = self.post_attention_layernorm(residual) | |
outputs = attn_outputs[1:] | |
# MLP. | |
mlp_output = self.mlp(layernorm_output) | |
if self.config.parallel_attn: | |
mlp_output += attention_output | |
output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training) | |
if use_cache: | |
outputs = (output,) + outputs | |
else: | |
outputs = (output,) + outputs[1:] | |
return outputs # hidden_states, present, attentions | |
class RWPreTrainedModel(PreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"] | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = RWConfig | |
base_model_prefix = "transformer" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["DecoderLayer"] | |
def __init__(self, *inputs, **kwargs): | |
super().__init__(*inputs, **kwargs) | |
def _init_weights(self, module: nn.Module): | |
"""Initialize the weights.""" | |
if isinstance(module, nn.Linear) or isinstance(module, Linear): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False): | |
if isinstance(module, RWModel): | |
module.gradient_checkpointing = value | |
def _convert_to_standard_cache( | |
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int | |
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: | |
""" | |
Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size, | |
num_heads, ...])) | |
""" | |
batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape | |
num_heads = batch_size_times_num_heads // batch_size | |
# key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length] | |
# value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim] | |
return tuple( | |
( | |
layer_past[0].view(batch_size, num_heads, head_dim, seq_length), | |
layer_past[1].view(batch_size, num_heads, seq_length, head_dim), | |
) | |
for layer_past in past_key_value | |
) | |
def _convert_to_rw_cache( | |
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]] | |
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: | |
batch_size, seq_length, head_dim = past_key_value[0][0].shape | |
batch_size_times_num_heads = batch_size | |
# key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length] | |
# value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim] | |
return tuple( | |
( | |
layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length), | |
layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim), | |
) | |
for layer_past in past_key_value | |
) | |
class RWModel(RWPreTrainedModel): | |
def __init__(self, config: RWConfig): | |
super().__init__(config) | |
self.embed_dim = config.hidden_size | |
self.num_heads = config.n_head | |
self.alibi = config.alibi | |
# Embedding + LN Embedding | |
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim) | |
# Transformer blocks | |
self.h = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
# Final Layer Norm | |
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.word_embeddings | |
def _prepare_attn_mask( | |
self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int | |
) -> torch.BoolTensor: | |
# create causal mask | |
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length] | |
combined_attention_mask = None | |
device = attention_mask.device | |
_, src_length = input_shape | |
# if src_length > 1: | |
combined_attention_mask = _make_causal_mask( | |
input_shape, device=device, past_key_values_length=past_key_values_length | |
) | |
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length] | |
expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length) | |
combined_attention_mask = ( | |
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask | |
) | |
return combined_attention_mask | |
def set_input_embeddings(self, new_embeddings: torch.Tensor): | |
self.word_embeddings = new_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
**deprecated_arguments, | |
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: | |
if deprecated_arguments.pop("position_ids", False) is not False: | |
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` | |
warnings.warn( | |
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" | |
" passing `position_ids`.", | |
FutureWarning, | |
) | |
if len(deprecated_arguments) > 0: | |
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") | |
# pdb.set_trace() | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
batch_size, seq_length = input_ids.shape | |
elif inputs_embeds is not None: | |
batch_size, seq_length, _ = inputs_embeds.shape | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
if past_key_values is None: | |
past_key_values = tuple([None] * len(self.h)) | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape batch_size x num_heads x N x N | |
# head_mask has shape n_layer x batch x num_heads x N x N | |
head_mask = self.get_head_mask(head_mask, self.config.n_layer) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
hidden_states = inputs_embeds | |
presents = () if use_cache else None | |
all_self_attentions = () if output_attentions else None | |
all_hidden_states = () if output_hidden_states else None | |
# Compute alibi tensor: check build_alibi_tensor documentation | |
seq_length_with_past = seq_length | |
past_key_values_length = 0 | |
if past_key_values[0] is not None: | |
past_key_values_length = past_key_values[0][0].shape[2] | |
seq_length_with_past = seq_length_with_past + past_key_values_length | |
if attention_mask is None: | |
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) | |
else: | |
attention_mask = attention_mask.to(hidden_states.device) | |
if self.alibi: | |
alibi = build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype) | |
else: | |
alibi = None | |
causal_mask = self._prepare_attn_mask( | |
attention_mask, | |
input_shape=(batch_size, seq_length), | |
past_key_values_length=past_key_values_length, | |
) | |
# print("causal_mask", causal_mask) | |
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
# None for past_key_value | |
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions) | |
return custom_forward | |
outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
alibi, | |
causal_mask, | |
head_mask[i], | |
) | |
else: | |
outputs = block( | |
hidden_states, | |
layer_past=layer_past, | |
attention_mask=causal_mask, | |
head_mask=head_mask[i], | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
alibi=alibi, | |
) | |
hidden_states = outputs[0] | |
if use_cache is True: | |
presents = presents + (outputs[1],) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) | |
# Add last hidden state | |
hidden_states = self.ln_f(hidden_states) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=presents, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
class RWForCausalLM(RWPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"] | |
def __init__(self, config: RWConfig): | |
super().__init__(config) | |
self.transformer = RWModel(config) | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings: torch.Tensor): | |
self.lm_head = new_embeddings | |
def prepare_inputs_for_generation( | |
self, | |
input_ids: torch.LongTensor, | |
past: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
**kwargs, | |
) -> dict: | |
# only last token for input_ids if past is not None | |
# only last token for input_ids if past is not None | |
if kwargs.get("past_key_values", None) : | |
input_ids = input_ids[:, -1].unsqueeze(-1) | |
past_key_values = kwargs["past_key_values"] | |
# the cache may be in the stardard format (e.g. in contrastive search), convert to our's format if needed | |
# if kwargs["past_key_values"][0][0].shape[0] == input_ids.shape[0]: | |
# past_key_values = self._convert_to_rw_cache(kwargs["past_key_values"]) | |
# past_key_values = kwargs["past_key_values"] | |
else : | |
past_key_values = None | |
return { | |
"input_ids": input_ids, | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
"attention_mask": attention_mask, | |
} | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
**deprecated_arguments, | |
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` | |
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` | |
""" | |
if deprecated_arguments.pop("position_ids", False) is not False: | |
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` | |
warnings.warn( | |
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" | |
" passing `position_ids`.", | |
FutureWarning, | |
) | |
if len(deprecated_arguments) > 0: | |
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer( | |
input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
lm_logits = self.lm_head(hidden_states) | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
batch_size, seq_length, vocab_size = shift_logits.shape | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct( | |
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) | |
) | |
if not return_dict: | |
output = (lm_logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return CausalLMOutputWithCrossAttentions( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
def _reorder_cache( | |
self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor | |
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: | |
""" | |
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or | |
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct | |
beam_idx at every generation step. | |
Output shares the same memory storage as `past`. | |
""" | |
standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx)) | |
# Get a copy of `beam_idx` on all the devices where we need those indices. | |
device_to_beam_idx = { | |
past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past | |
} | |
reordered_past = tuple( | |
( | |
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]), | |
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]), | |
) | |
for layer_past in standardized_past | |
) | |
return self._convert_to_rw_cache(reordered_past) | |
class RWForSequenceClassification(RWPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"] | |
def __init__(self, config: RWConfig): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.transformer = RWModel(config) | |
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
**deprecated_arguments, | |
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
if deprecated_arguments.pop("position_ids", False) is not False: | |
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` | |
warnings.warn( | |
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" | |
" passing `position_ids`.", | |
FutureWarning, | |
) | |
if len(deprecated_arguments) > 0: | |
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer( | |
input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
logits = self.score(hidden_states) | |
if input_ids is not None: | |
batch_size = input_ids.shape[0] | |
else: | |
batch_size = inputs_embeds.shape[0] | |
if self.config.pad_token_id is None and batch_size != 1: | |
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | |
if self.config.pad_token_id is None: | |
sequence_lengths = -1 | |
else: | |
if input_ids is not None: | |
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(dim=-1) - 1 | |
else: | |
sequence_lengths = -1 | |
logger.warning( | |
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " | |
"unexpected if using padding tokens in conjunction with `inputs_embeds.`" | |
) | |
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(pooled_logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(pooled_logits, labels) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(pooled_logits, labels) | |
if not return_dict: | |
output = (pooled_logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutputWithPast( | |
loss=loss, | |
logits=pooled_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
class RWForTokenClassification(RWPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"] | |
def __init__(self, config: RWConfig): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.transformer = RWModel(config) | |
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: | |
classifier_dropout = config.classifier_dropout | |
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: | |
classifier_dropout = config.hidden_dropout | |
else: | |
classifier_dropout = 0.1 | |
self.dropout = nn.Dropout(classifier_dropout) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
**deprecated_arguments, | |
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
if deprecated_arguments.pop("position_ids", False) is not False: | |
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` | |
warnings.warn( | |
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" | |
" passing `position_ids`.", | |
FutureWarning, | |
) | |
if len(deprecated_arguments) > 0: | |
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer( | |
input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
hidden_states = self.dropout(hidden_states) | |
logits = self.classifier(hidden_states) | |
loss = None | |
if labels is not None: | |
batch_size, seq_length = labels.shape | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)) | |
if not return_dict: | |
output = (logits,) + transformer_outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
class RWForQuestionAnswering(RWPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.transformer = RWModel(config) | |
self.qa_outputs = nn.Linear(config.hidden_size, 2) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
start_positions: Optional[torch.LongTensor] = None, | |
end_positions: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, QuestionAnsweringModelOutput]: | |
r""" | |
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1).contiguous() | |
end_logits = end_logits.squeeze(-1).contiguous() | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions = start_positions.clamp(0, ignored_index) | |
end_positions = end_positions.clamp(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
output = (start_logits, end_logits) + outputs[2:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return QuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |