--- license: apache-2.0 base_model: - rhymes-ai/Aria-sequential_mlp - rhymes-ai/Aria pipeline_tag: image-text-to-text library_name: transformers --- # Aria-sequential_mlp-FP8-dynamic FP8-Dynamic quantization from [Aria-sequential_mlp](https://huggingface.co./rhymes-ai/Aria-sequential_mlp) made with [llm-compressor](https://github.com/vllm-project/llm-compressor), requires about 30 GB of VRAM. ### Installation ``` pip install transformers==4.45.0 accelerate==0.34.1 sentencepiece==0.2.0 torchvision requests torch Pillow compressed-tensors pip install flash-attn --no-build-isolation ``` ### Inference Run this model with: ``` python import requests import torch from PIL import Image from transformers import AutoModelForCausalLM, AutoProcessor, BitsAndBytesConfig torch.cuda.set_device(0) model_id_or_path = "thwin27/Aria-sequential_mlp-bnb_FP8-dynamic" model = AutoModelForCausalLM.from_pretrained(model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True) processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True) image_path = "https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png" image = Image.open(requests.get(image_path, stream=True).raw) messages = [ { "role": "user", "content": [ {"text": None, "type": "image"}, {"text": "what is the image?", "type": "text"}, ], } ] text = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor(text=text, images=image, return_tensors="pt") inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype) inputs = {k: v.to(model.device) for k, v in inputs.items()} with torch.inference_mode(), torch.amp.autocast("cuda", dtype=torch.bfloat16): output = model.generate( **inputs, max_new_tokens=500, stop_strings=["<|im_end|>"], tokenizer=processor.tokenizer, do_sample=True, temperature=0.9, ) output_ids = output[0][inputs["input_ids"].shape[1]:] result = processor.decode(output_ids, skip_special_tokens=True) print(result) print(f'Max allocated memory: {torch.cuda.max_memory_allocated(device="cuda") / 1024 ** 3:.3f}GiB') ``` ### Quantization ```python from transformers import AutoProcessor, AutoModelForCausalLM from llmcompressor.modifiers.quantization import QuantizationModifier from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot model_name = "rhymes-ai/Aria-sequential_mlp" model = SparseAutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True) processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True) recipe = QuantizationModifier( targets="Linear", scheme="FP8_DYNAMIC", ignore=["re:.*lm_head", "re:multi_modal_projector.*", "re:vision_tower.*"], ) folder = model_name.split("/")[1] + "-FP8-Dynamic" oneshot(model=model, recipe=recipe, output_dir=folder) processor.save_pretrained(folder) ```