Update ts_generation_mixin.py
Browse files- ts_generation_mixin.py +250 -251
ts_generation_mixin.py
CHANGED
@@ -1,251 +1,250 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
"`max_length`
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
#
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
]
|
56 |
-
eos_token_id
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
return_dict_in_generate
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
# argmax
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
)
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
return model_kwargs
|
|
|
1 |
+
class TSGenerationMixin(GenerationMixin):
|
2 |
+
|
3 |
+
def _greedy_search(
|
4 |
+
self,
|
5 |
+
input_ids: torch.Tensor,
|
6 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
7 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
8 |
+
max_length: Optional[int] = None,
|
9 |
+
pad_token_id: Optional[int] = None,
|
10 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
11 |
+
output_attentions: Optional[bool] = None,
|
12 |
+
output_hidden_states: Optional[bool] = None,
|
13 |
+
output_scores: Optional[bool] = None,
|
14 |
+
output_logits: Optional[bool] = None,
|
15 |
+
return_dict_in_generate: Optional[bool] = None,
|
16 |
+
synced_gpus: bool = False,
|
17 |
+
streamer: Optional["BaseStreamer"] = None,
|
18 |
+
**model_kwargs,
|
19 |
+
) -> Union[GenerateNonBeamOutput, torch.Tensor]:
|
20 |
+
input_ids = input_ids.to(self.device)
|
21 |
+
if len(input_ids.shape) == 2:
|
22 |
+
batch_size, cur_len = input_ids.shape
|
23 |
+
if cur_len < self.config.input_token_len:
|
24 |
+
raise ValueError(
|
25 |
+
f"Input length must be at least {self.config.input_token_len}")
|
26 |
+
elif cur_len % self.config.input_token_len != 0:
|
27 |
+
new_len = (cur_len // self.config.input_token_len) * \
|
28 |
+
self.config.input_token_len
|
29 |
+
input_ids = input_ids[:, -new_len:]
|
30 |
+
else:
|
31 |
+
raise ValueError('Input shape must be: [batch_size, seq_len]')
|
32 |
+
initial_input_length = input_ids.shape[1]
|
33 |
+
|
34 |
+
# init values
|
35 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
36 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
37 |
+
if max_length is not None:
|
38 |
+
warnings.warn(
|
39 |
+
"`max_length` is deprecated in this function, use"
|
40 |
+
" `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
|
41 |
+
UserWarning,
|
42 |
+
)
|
43 |
+
stopping_criteria = validate_stopping_criteria(
|
44 |
+
stopping_criteria, max_length)
|
45 |
+
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
|
46 |
+
if eos_token_id is not None:
|
47 |
+
stopping_criteria.append(
|
48 |
+
EosTokenCriteria(eos_token_id=eos_token_id))
|
49 |
+
else:
|
50 |
+
# remove when the method is totally private
|
51 |
+
# need to get `eos_token_id` and add stopping criteria, so that generation does not go forever
|
52 |
+
eos_token_id = [
|
53 |
+
criteria.eos_token_id.tolist() for criteria in stopping_criteria if hasattr(criteria, "eos_token_id")
|
54 |
+
]
|
55 |
+
eos_token_id = eos_token_id[0] if eos_token_id else None
|
56 |
+
if eos_token_id is None and self.generation_config.eos_token_id is not None:
|
57 |
+
eos_token_id = self.generation_config.eos_token_id
|
58 |
+
stopping_criteria.append(
|
59 |
+
EosTokenCriteria(eos_token_id=eos_token_id))
|
60 |
+
|
61 |
+
if isinstance(eos_token_id, int):
|
62 |
+
eos_token_id = [eos_token_id]
|
63 |
+
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
|
64 |
+
output_attentions = (
|
65 |
+
output_attentions if output_attentions is not None else self.generation_config.output_attentions
|
66 |
+
)
|
67 |
+
output_hidden_states = (
|
68 |
+
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
|
69 |
+
)
|
70 |
+
return_dict_in_generate = (
|
71 |
+
return_dict_in_generate
|
72 |
+
if return_dict_in_generate is not None
|
73 |
+
else self.generation_config.return_dict_in_generate
|
74 |
+
)
|
75 |
+
|
76 |
+
# init attention / hidden states / scores tuples
|
77 |
+
raw_logits = () if (return_dict_in_generate and output_logits) else None
|
78 |
+
scores = () if (return_dict_in_generate and output_scores) else None
|
79 |
+
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
|
80 |
+
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
|
81 |
+
decoder_hidden_states = () if (
|
82 |
+
return_dict_in_generate and output_hidden_states) else None
|
83 |
+
|
84 |
+
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
|
85 |
+
if return_dict_in_generate and self.config.is_encoder_decoder:
|
86 |
+
encoder_attentions = model_kwargs["encoder_outputs"].get(
|
87 |
+
"attentions") if output_attentions else None
|
88 |
+
encoder_hidden_states = (
|
89 |
+
model_kwargs["encoder_outputs"].get(
|
90 |
+
"hidden_states") if output_hidden_states else None
|
91 |
+
)
|
92 |
+
|
93 |
+
# keep track of which sequences are already finished
|
94 |
+
if "inputs_embeds" in model_kwargs:
|
95 |
+
cur_len = model_kwargs["inputs_embeds"].shape[1]
|
96 |
+
this_peer_finished = False
|
97 |
+
unfinished_sequences = torch.ones(
|
98 |
+
batch_size, dtype=torch.long, device=input_ids.device)
|
99 |
+
model_kwargs["cache_position"] = torch.arange(
|
100 |
+
cur_len, device=input_ids.device)
|
101 |
+
true_seq_len = input_ids.shape[1] // self.config.input_token_len
|
102 |
+
model_kwargs["attention_mask"] = model_kwargs["attention_mask"][:, -true_seq_len:]
|
103 |
+
|
104 |
+
max_length = stopping_criteria.max_length
|
105 |
+
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
|
106 |
+
# prepare model inputs
|
107 |
+
model_inputs = self.prepare_inputs_for_generation(
|
108 |
+
input_ids, **model_kwargs)
|
109 |
+
|
110 |
+
input_length = input_ids.shape[1]
|
111 |
+
|
112 |
+
# forward pass to get next token
|
113 |
+
outputs = self(
|
114 |
+
**model_inputs,
|
115 |
+
return_dict=True,
|
116 |
+
output_attentions=output_attentions,
|
117 |
+
output_hidden_states=output_hidden_states,
|
118 |
+
max_output_length=max_length - input_length,
|
119 |
+
)
|
120 |
+
|
121 |
+
if synced_gpus and this_peer_finished:
|
122 |
+
continue # don't waste resources running the code we don't need
|
123 |
+
|
124 |
+
next_token_logits = outputs.logits[:, -1, :]
|
125 |
+
|
126 |
+
# pre-process distribution
|
127 |
+
next_tokens_scores = logits_processor(input_ids, next_token_logits)
|
128 |
+
|
129 |
+
# Store scores, attentions and hidden_states when required
|
130 |
+
if return_dict_in_generate:
|
131 |
+
if output_scores:
|
132 |
+
scores += (next_tokens_scores,)
|
133 |
+
if output_logits:
|
134 |
+
raw_logits += (next_token_logits,)
|
135 |
+
if output_attentions:
|
136 |
+
decoder_attentions += (
|
137 |
+
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (
|
138 |
+
outputs.attentions,)
|
139 |
+
)
|
140 |
+
if self.config.is_encoder_decoder:
|
141 |
+
cross_attentions += (outputs.cross_attentions,)
|
142 |
+
|
143 |
+
if output_hidden_states:
|
144 |
+
decoder_hidden_states += (
|
145 |
+
(outputs.decoder_hidden_states,)
|
146 |
+
if self.config.is_encoder_decoder
|
147 |
+
else (outputs.hidden_states,)
|
148 |
+
)
|
149 |
+
|
150 |
+
# argmax
|
151 |
+
# next_tokens = torch.argmax(next_tokens_scores, dim=-1)
|
152 |
+
next_tokens = next_tokens_scores
|
153 |
+
|
154 |
+
# finished sentences should have their next token be a padding token
|
155 |
+
if eos_token_id is not None:
|
156 |
+
if pad_token_id is None:
|
157 |
+
raise ValueError(
|
158 |
+
"If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
|
159 |
+
next_tokens = next_tokens * unfinished_sequences + \
|
160 |
+
pad_token_id * (1 - unfinished_sequences)
|
161 |
+
|
162 |
+
# update generated ids, model inputs, and length for next step
|
163 |
+
horizon_length = next_tokens.shape[1] // self.config.input_token_len
|
164 |
+
|
165 |
+
input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
166 |
+
if streamer is not None:
|
167 |
+
streamer.put(next_tokens.cpu())
|
168 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
169 |
+
outputs,
|
170 |
+
model_kwargs,
|
171 |
+
horizon_length=horizon_length,
|
172 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
173 |
+
)
|
174 |
+
unfinished_sequences = unfinished_sequences & ~stopping_criteria(
|
175 |
+
input_ids, scores)
|
176 |
+
this_peer_finished = unfinished_sequences.max() == 0
|
177 |
+
|
178 |
+
if input_ids.shape[1] > max_length:
|
179 |
+
input_ids = input_ids[:, :max_length]
|
180 |
+
|
181 |
+
if streamer is not None:
|
182 |
+
streamer.end()
|
183 |
+
|
184 |
+
if return_dict_in_generate:
|
185 |
+
if self.config.is_encoder_decoder:
|
186 |
+
return GenerateEncoderDecoderOutput(
|
187 |
+
sequences=input_ids,
|
188 |
+
scores=scores,
|
189 |
+
logits=raw_logits,
|
190 |
+
encoder_attentions=encoder_attentions,
|
191 |
+
encoder_hidden_states=encoder_hidden_states,
|
192 |
+
decoder_attentions=decoder_attentions,
|
193 |
+
cross_attentions=cross_attentions,
|
194 |
+
decoder_hidden_states=decoder_hidden_states,
|
195 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
196 |
+
)
|
197 |
+
else:
|
198 |
+
return GenerateDecoderOnlyOutput(
|
199 |
+
sequences=input_ids,
|
200 |
+
scores=scores,
|
201 |
+
logits=raw_logits,
|
202 |
+
attentions=decoder_attentions,
|
203 |
+
hidden_states=decoder_hidden_states,
|
204 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
205 |
+
)
|
206 |
+
else:
|
207 |
+
return input_ids[:, -(max_length - initial_input_length):]
|
208 |
+
|
209 |
+
def _update_model_kwargs_for_generation(
|
210 |
+
self,
|
211 |
+
outputs: ModelOutput,
|
212 |
+
model_kwargs: Dict[str, Any],
|
213 |
+
horizon_length: int = 1,
|
214 |
+
is_encoder_decoder: bool = False,
|
215 |
+
standardize_cache_format: bool = False,
|
216 |
+
) -> Dict[str, Any]:
|
217 |
+
# update past_key_values
|
218 |
+
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
|
219 |
+
outputs, standardize_cache_format=standardize_cache_format
|
220 |
+
)
|
221 |
+
if getattr(outputs, "state", None) is not None:
|
222 |
+
model_kwargs["state"] = outputs.state
|
223 |
+
|
224 |
+
# update token_type_ids with last value
|
225 |
+
if "token_type_ids" in model_kwargs:
|
226 |
+
token_type_ids = model_kwargs["token_type_ids"]
|
227 |
+
model_kwargs["token_type_ids"] = torch.cat(
|
228 |
+
[token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
|
229 |
+
|
230 |
+
if not is_encoder_decoder:
|
231 |
+
# update attention mask
|
232 |
+
if "attention_mask" in model_kwargs:
|
233 |
+
attention_mask = model_kwargs["attention_mask"]
|
234 |
+
model_kwargs["attention_mask"] = torch.cat(
|
235 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], horizon_length))], dim=-1
|
236 |
+
)
|
237 |
+
else:
|
238 |
+
# update decoder attention mask
|
239 |
+
if "decoder_attention_mask" in model_kwargs:
|
240 |
+
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
|
241 |
+
model_kwargs["decoder_attention_mask"] = torch.cat(
|
242 |
+
[decoder_attention_mask, decoder_attention_mask.new_ones(
|
243 |
+
(decoder_attention_mask.shape[0], horizon_length))],
|
244 |
+
dim=-1,
|
245 |
+
)
|
246 |
+
|
247 |
+
if "cache_position" in model_kwargs and model_kwargs["cache_position"] is not None:
|
248 |
+
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + horizon_length
|
249 |
+
|
250 |
+
return model_kwargs
|
|