Yong99 commited on
Commit
5251b05
·
verified ·
1 Parent(s): 79dc62b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -4
README.md CHANGED
@@ -8,9 +8,9 @@ pipeline_tag: time-series-forecasting
8
 
9
  Large time-series model introduced in this [paper](https://arxiv.org/abs/2402.02368) and enhanced with our [further work](https://arxiv.org/abs/2410.04803).
10
 
11
- This version is pre-trained on **307B** time points, which supports zero-shot forecasting and further adaptation.
12
- * Zero-shot forecasting benchmarks: [TSLib Dataset](https://cdn-uploads.huggingface.co/production/uploads/64fbe24a2d20ced4e91de38a/n2IW7fTRpuZFMYoPr1h4O.png), [GIFT-Eval]().
13
- * Codebase for fine-tuning: [Large-Time-Series-Model](https://github.com/thuml/Large-Time-Series-Model).
14
 
15
  # Quickstart
16
 
@@ -28,7 +28,9 @@ normed_seqs = (seqs - mean) / std
28
 
29
  # forecast
30
  prediction_length = 96
31
- output = model.generate(normed_seqs, max_new_tokens=prediction_length)[:, -prediction_length:]
 
 
32
  print(output.shape)
33
  ```
34
 
 
8
 
9
  Large time-series model introduced in this [paper](https://arxiv.org/abs/2402.02368) and enhanced with our [further work](https://arxiv.org/abs/2410.04803).
10
 
11
+ This version is pre-trained on **307B** time points with **84M** parameters, a lightweight generative Transformer with the state-of-the-art performance on zero-shot forecasting:
12
+
13
+ We evaluate the model on the following benchmarks: [TSLib Dataset](), [GIFT-Eval]().
14
 
15
  # Quickstart
16
 
 
28
 
29
  # forecast
30
  prediction_length = 96
31
+ normed_output = model.generate(normed_seqs, max_new_tokens=prediction_length)[:, -prediction_length:]
32
+ output = std * normed_output + mean
33
+
34
  print(output.shape)
35
  ```
36