|
import warnings
|
|
from typing import Any, Dict, List, Optional, Union
|
|
import torch
|
|
from transformers import GenerationMixin, LogitsProcessorList, StoppingCriteriaList
|
|
from transformers.generation import validate_stopping_criteria, EosTokenCriteria
|
|
from transformers.generation.utils import GenerateNonBeamOutput, GenerateEncoderDecoderOutput, GenerateDecoderOnlyOutput
|
|
from transformers.utils import ModelOutput
|
|
|
|
|
|
class TSGenerationMixin(GenerationMixin):
|
|
|
|
def _greedy_search(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
|
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
|
max_length: Optional[int] = None,
|
|
pad_token_id: Optional[int] = None,
|
|
eos_token_id: Optional[Union[int, List[int]]] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
output_scores: Optional[bool] = None,
|
|
output_logits: Optional[bool] = None,
|
|
return_dict_in_generate: Optional[bool] = None,
|
|
synced_gpus: bool = False,
|
|
streamer: Optional["BaseStreamer"] = None,
|
|
**model_kwargs,
|
|
) -> Union[GenerateNonBeamOutput, torch.Tensor]:
|
|
input_ids_origin_device = input_ids.device
|
|
input_ids = input_ids.to(self.device)
|
|
if len(input_ids.shape) == 2:
|
|
batch_size, cur_len = input_ids.shape
|
|
else:
|
|
raise ValueError('Input shape must be: [batch_size, seq_len]')
|
|
|
|
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
|
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
|
if max_length is not None:
|
|
warnings.warn(
|
|
"`max_length` is deprecated in this function, use"
|
|
" `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
|
|
UserWarning,
|
|
)
|
|
stopping_criteria = validate_stopping_criteria(
|
|
stopping_criteria, max_length)
|
|
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
|
|
if eos_token_id is not None:
|
|
stopping_criteria.append(
|
|
EosTokenCriteria(eos_token_id=eos_token_id))
|
|
else:
|
|
|
|
|
|
eos_token_id = [
|
|
criteria.eos_token_id.tolist() for criteria in stopping_criteria if hasattr(criteria, "eos_token_id")
|
|
]
|
|
eos_token_id = eos_token_id[0] if eos_token_id else None
|
|
if eos_token_id is None and self.generation_config.eos_token_id is not None:
|
|
eos_token_id = self.generation_config.eos_token_id
|
|
stopping_criteria.append(
|
|
EosTokenCriteria(eos_token_id=eos_token_id))
|
|
|
|
if isinstance(eos_token_id, int):
|
|
eos_token_id = [eos_token_id]
|
|
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
|
|
output_attentions = (
|
|
output_attentions if output_attentions is not None else self.generation_config.output_attentions
|
|
)
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
|
|
)
|
|
return_dict_in_generate = (
|
|
return_dict_in_generate
|
|
if return_dict_in_generate is not None
|
|
else self.generation_config.return_dict_in_generate
|
|
)
|
|
|
|
|
|
raw_logits = () if (return_dict_in_generate and output_logits) else None
|
|
scores = () if (return_dict_in_generate and output_scores) else None
|
|
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
|
|
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
|
|
decoder_hidden_states = () if (
|
|
return_dict_in_generate and output_hidden_states) else None
|
|
|
|
|
|
if return_dict_in_generate and self.config.is_encoder_decoder:
|
|
encoder_attentions = model_kwargs["encoder_outputs"].get(
|
|
"attentions") if output_attentions else None
|
|
encoder_hidden_states = (
|
|
model_kwargs["encoder_outputs"].get(
|
|
"hidden_states") if output_hidden_states else None
|
|
)
|
|
|
|
|
|
if "inputs_embeds" in model_kwargs:
|
|
cur_len = model_kwargs["inputs_embeds"].shape[1]
|
|
this_peer_finished = False
|
|
unfinished_sequences = torch.ones(
|
|
batch_size, dtype=torch.long, device=input_ids.device)
|
|
model_kwargs["cache_position"] = torch.arange(
|
|
cur_len, device=input_ids.device)
|
|
true_seq_len = input_ids.shape[1] // self.config.input_token_len
|
|
model_kwargs["attention_mask"] = model_kwargs["attention_mask"][:, -true_seq_len:]
|
|
|
|
max_length = stopping_criteria.max_length
|
|
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
|
|
|
|
model_inputs = self.prepare_inputs_for_generation(
|
|
input_ids, **model_kwargs)
|
|
|
|
input_length = input_ids.shape[1]
|
|
|
|
|
|
outputs = self(
|
|
**model_inputs,
|
|
return_dict=True,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
max_output_length=max_length - input_length,
|
|
)
|
|
|
|
if synced_gpus and this_peer_finished:
|
|
continue
|
|
|
|
next_token_logits = outputs.logits[:, -1, :]
|
|
|
|
|
|
next_tokens_scores = logits_processor(input_ids, next_token_logits)
|
|
|
|
|
|
if return_dict_in_generate:
|
|
if output_scores:
|
|
scores += (next_tokens_scores,)
|
|
if output_logits:
|
|
raw_logits += (next_token_logits,)
|
|
if output_attentions:
|
|
decoder_attentions += (
|
|
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (
|
|
outputs.attentions,)
|
|
)
|
|
if self.config.is_encoder_decoder:
|
|
cross_attentions += (outputs.cross_attentions,)
|
|
|
|
if output_hidden_states:
|
|
decoder_hidden_states += (
|
|
(outputs.decoder_hidden_states,)
|
|
if self.config.is_encoder_decoder
|
|
else (outputs.hidden_states,)
|
|
)
|
|
|
|
|
|
|
|
next_tokens = next_tokens_scores
|
|
|
|
|
|
if eos_token_id is not None:
|
|
if pad_token_id is None:
|
|
raise ValueError(
|
|
"If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
|
|
next_tokens = next_tokens * unfinished_sequences + \
|
|
pad_token_id * (1 - unfinished_sequences)
|
|
|
|
|
|
horizon_length = next_tokens.shape[1] // self.config.input_token_len
|
|
|
|
input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
|
if streamer is not None:
|
|
streamer.put(next_tokens.cpu())
|
|
model_kwargs = self._update_model_kwargs_for_generation(
|
|
outputs,
|
|
model_kwargs,
|
|
horizon_length=horizon_length,
|
|
is_encoder_decoder=self.config.is_encoder_decoder,
|
|
)
|
|
unfinished_sequences = unfinished_sequences & ~stopping_criteria(
|
|
input_ids, scores)
|
|
this_peer_finished = unfinished_sequences.max() == 0
|
|
|
|
if input_ids.shape[1] > max_length:
|
|
input_ids = input_ids[:, :max_length]
|
|
|
|
if streamer is not None:
|
|
streamer.end()
|
|
|
|
if return_dict_in_generate:
|
|
if self.config.is_encoder_decoder:
|
|
return GenerateEncoderDecoderOutput(
|
|
sequences=input_ids,
|
|
scores=scores,
|
|
logits=raw_logits,
|
|
encoder_attentions=encoder_attentions,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
decoder_attentions=decoder_attentions,
|
|
cross_attentions=cross_attentions,
|
|
decoder_hidden_states=decoder_hidden_states,
|
|
past_key_values=model_kwargs.get("past_key_values"),
|
|
)
|
|
else:
|
|
return GenerateDecoderOnlyOutput(
|
|
sequences=input_ids,
|
|
scores=scores,
|
|
logits=raw_logits,
|
|
attentions=decoder_attentions,
|
|
hidden_states=decoder_hidden_states,
|
|
past_key_values=model_kwargs.get("past_key_values"),
|
|
)
|
|
else:
|
|
return input_ids
|
|
|
|
def _update_model_kwargs_for_generation(
|
|
self,
|
|
outputs: ModelOutput,
|
|
model_kwargs: Dict[str, Any],
|
|
horizon_length: int = 1,
|
|
is_encoder_decoder: bool = False,
|
|
standardize_cache_format: bool = False,
|
|
) -> Dict[str, Any]:
|
|
|
|
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
|
|
outputs, standardize_cache_format=standardize_cache_format
|
|
)
|
|
if getattr(outputs, "state", None) is not None:
|
|
model_kwargs["state"] = outputs.state
|
|
|
|
|
|
if "token_type_ids" in model_kwargs:
|
|
token_type_ids = model_kwargs["token_type_ids"]
|
|
model_kwargs["token_type_ids"] = torch.cat(
|
|
[token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
|
|
|
|
if not is_encoder_decoder:
|
|
|
|
if "attention_mask" in model_kwargs:
|
|
attention_mask = model_kwargs["attention_mask"]
|
|
model_kwargs["attention_mask"] = torch.cat(
|
|
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], horizon_length))], dim=-1
|
|
)
|
|
else:
|
|
|
|
if "decoder_attention_mask" in model_kwargs:
|
|
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
|
|
model_kwargs["decoder_attention_mask"] = torch.cat(
|
|
[decoder_attention_mask, decoder_attention_mask.new_ones(
|
|
(decoder_attention_mask.shape[0], horizon_length))],
|
|
dim=-1,
|
|
)
|
|
|
|
if "cache_position" in model_kwargs and model_kwargs["cache_position"] is not None:
|
|
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + horizon_length
|
|
|
|
return model_kwargs
|
|
|