|
import warnings |
|
from typing import Any, Dict, List, Optional, Union, Callable |
|
import torch |
|
from transformers import GenerationMixin, LogitsProcessorList, StoppingCriteriaList |
|
from transformers.generation import validate_stopping_criteria, EosTokenCriteria |
|
from transformers.generation.utils import GenerateNonBeamOutput, GenerateEncoderDecoderOutput, GenerateDecoderOnlyOutput, GenerationConfig, GenerateOutput |
|
from transformers.utils import ModelOutput |
|
|
|
class TSGenerationMixin(GenerationMixin): |
|
|
|
def _greedy_search( |
|
self, |
|
input_ids: torch.Tensor, |
|
logits_processor: Optional[LogitsProcessorList] = None, |
|
stopping_criteria: Optional[StoppingCriteriaList] = None, |
|
max_length: Optional[int] = None, |
|
pad_token_id: Optional[int] = None, |
|
eos_token_id: Optional[Union[int, List[int]]] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_scores: Optional[bool] = None, |
|
output_logits: Optional[bool] = None, |
|
return_dict_in_generate: Optional[bool] = None, |
|
synced_gpus: bool = False, |
|
streamer: Optional["BaseStreamer"] = None, |
|
**model_kwargs, |
|
) -> Union[GenerateNonBeamOutput, torch.Tensor]: |
|
input_ids = input_ids.to(self.device) |
|
if len(input_ids.shape) == 2: |
|
batch_size, cur_len = input_ids.shape |
|
if cur_len < self.config.input_token_len: |
|
raise ValueError( |
|
f"Input length must be at least {self.config.input_token_len}") |
|
elif cur_len % self.config.input_token_len != 0: |
|
new_len = (cur_len // self.config.input_token_len) * \ |
|
self.config.input_token_len |
|
input_ids = input_ids[:, -new_len:] |
|
else: |
|
raise ValueError('Input shape must be: [batch_size, seq_len]') |
|
initial_input_length = input_ids.shape[1] |
|
|
|
|
|
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() |
|
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() |
|
if max_length is not None: |
|
warnings.warn( |
|
"`max_length` is deprecated in this function, use" |
|
" `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.", |
|
UserWarning, |
|
) |
|
stopping_criteria = validate_stopping_criteria( |
|
stopping_criteria, max_length) |
|
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id |
|
if eos_token_id is not None: |
|
stopping_criteria.append( |
|
EosTokenCriteria(eos_token_id=eos_token_id)) |
|
else: |
|
|
|
|
|
eos_token_id = [ |
|
criteria.eos_token_id.tolist() for criteria in stopping_criteria if hasattr(criteria, "eos_token_id") |
|
] |
|
eos_token_id = eos_token_id[0] if eos_token_id else None |
|
if eos_token_id is None and self.generation_config.eos_token_id is not None: |
|
eos_token_id = self.generation_config.eos_token_id |
|
stopping_criteria.append( |
|
EosTokenCriteria(eos_token_id=eos_token_id)) |
|
|
|
if isinstance(eos_token_id, int): |
|
eos_token_id = [eos_token_id] |
|
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores |
|
output_attentions = ( |
|
output_attentions if output_attentions is not None else self.generation_config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states |
|
) |
|
return_dict_in_generate = ( |
|
return_dict_in_generate |
|
if return_dict_in_generate is not None |
|
else self.generation_config.return_dict_in_generate |
|
) |
|
|
|
|
|
raw_logits = () if (return_dict_in_generate and output_logits) else None |
|
scores = () if (return_dict_in_generate and output_scores) else None |
|
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None |
|
cross_attentions = () if (return_dict_in_generate and output_attentions) else None |
|
decoder_hidden_states = () if ( |
|
return_dict_in_generate and output_hidden_states) else None |
|
|
|
|
|
if return_dict_in_generate and self.config.is_encoder_decoder: |
|
encoder_attentions = model_kwargs["encoder_outputs"].get( |
|
"attentions") if output_attentions else None |
|
encoder_hidden_states = ( |
|
model_kwargs["encoder_outputs"].get( |
|
"hidden_states") if output_hidden_states else None |
|
) |
|
|
|
|
|
if "inputs_embeds" in model_kwargs: |
|
cur_len = model_kwargs["inputs_embeds"].shape[1] |
|
this_peer_finished = False |
|
unfinished_sequences = torch.ones( |
|
batch_size, dtype=torch.long, device=input_ids.device) |
|
model_kwargs["cache_position"] = torch.arange( |
|
cur_len, device=input_ids.device) |
|
true_seq_len = input_ids.shape[1] // self.config.input_token_len |
|
model_kwargs["attention_mask"] = model_kwargs["attention_mask"][:, -true_seq_len:] |
|
|
|
max_length = stopping_criteria.max_length |
|
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device): |
|
|
|
model_inputs = self.prepare_inputs_for_generation( |
|
input_ids, **model_kwargs) |
|
|
|
input_length = input_ids.shape[1] |
|
|
|
|
|
outputs = self( |
|
**model_inputs, |
|
return_dict=True, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
max_output_length=max_length - input_length, |
|
) |
|
|
|
if synced_gpus and this_peer_finished: |
|
continue |
|
|
|
next_token_logits = outputs.logits[:, -1, :] |
|
|
|
|
|
next_tokens_scores = logits_processor(input_ids, next_token_logits) |
|
|
|
|
|
if return_dict_in_generate: |
|
if output_scores: |
|
scores += (next_tokens_scores,) |
|
if output_logits: |
|
raw_logits += (next_token_logits,) |
|
if output_attentions: |
|
decoder_attentions += ( |
|
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else ( |
|
outputs.attentions,) |
|
) |
|
if self.config.is_encoder_decoder: |
|
cross_attentions += (outputs.cross_attentions,) |
|
|
|
if output_hidden_states: |
|
decoder_hidden_states += ( |
|
(outputs.decoder_hidden_states,) |
|
if self.config.is_encoder_decoder |
|
else (outputs.hidden_states,) |
|
) |
|
|
|
|
|
|
|
next_tokens = next_tokens_scores |
|
|
|
|
|
if eos_token_id is not None: |
|
if pad_token_id is None: |
|
raise ValueError( |
|
"If `eos_token_id` is defined, make sure that `pad_token_id` is defined.") |
|
next_tokens = next_tokens * unfinished_sequences + \ |
|
pad_token_id * (1 - unfinished_sequences) |
|
|
|
|
|
horizon_length = next_tokens.shape[1] // self.config.input_token_len |
|
|
|
input_ids = torch.cat([input_ids, next_tokens], dim=-1) |
|
if streamer is not None: |
|
streamer.put(next_tokens.cpu()) |
|
model_kwargs = self._update_model_kwargs_for_generation( |
|
outputs, |
|
model_kwargs, |
|
horizon_length=horizon_length, |
|
is_encoder_decoder=self.config.is_encoder_decoder, |
|
) |
|
unfinished_sequences = unfinished_sequences & ~stopping_criteria( |
|
input_ids, scores) |
|
this_peer_finished = unfinished_sequences.max() == 0 |
|
|
|
if input_ids.shape[1] > max_length: |
|
input_ids = input_ids[:, :max_length] |
|
|
|
if streamer is not None: |
|
streamer.end() |
|
|
|
if return_dict_in_generate: |
|
if self.config.is_encoder_decoder: |
|
return GenerateEncoderDecoderOutput( |
|
sequences=input_ids, |
|
scores=scores, |
|
logits=raw_logits, |
|
encoder_attentions=encoder_attentions, |
|
encoder_hidden_states=encoder_hidden_states, |
|
decoder_attentions=decoder_attentions, |
|
cross_attentions=cross_attentions, |
|
decoder_hidden_states=decoder_hidden_states, |
|
past_key_values=model_kwargs.get("past_key_values"), |
|
) |
|
else: |
|
return GenerateDecoderOnlyOutput( |
|
sequences=input_ids, |
|
scores=scores, |
|
logits=raw_logits, |
|
attentions=decoder_attentions, |
|
hidden_states=decoder_hidden_states, |
|
past_key_values=model_kwargs.get("past_key_values"), |
|
) |
|
else: |
|
return input_ids[:, -(max_length - initial_input_length):] |
|
|
|
def _update_model_kwargs_for_generation( |
|
self, |
|
outputs: ModelOutput, |
|
model_kwargs: Dict[str, Any], |
|
horizon_length: int = 1, |
|
is_encoder_decoder: bool = False, |
|
standardize_cache_format: bool = False, |
|
) -> Dict[str, Any]: |
|
|
|
model_kwargs["past_key_values"] = self._extract_past_from_model_output( |
|
outputs, standardize_cache_format=standardize_cache_format |
|
) |
|
if getattr(outputs, "state", None) is not None: |
|
model_kwargs["state"] = outputs.state |
|
|
|
|
|
if "token_type_ids" in model_kwargs: |
|
token_type_ids = model_kwargs["token_type_ids"] |
|
model_kwargs["token_type_ids"] = torch.cat( |
|
[token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1) |
|
|
|
if not is_encoder_decoder: |
|
|
|
if "attention_mask" in model_kwargs: |
|
attention_mask = model_kwargs["attention_mask"] |
|
model_kwargs["attention_mask"] = torch.cat( |
|
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], horizon_length))], dim=-1 |
|
) |
|
else: |
|
|
|
if "decoder_attention_mask" in model_kwargs: |
|
decoder_attention_mask = model_kwargs["decoder_attention_mask"] |
|
model_kwargs["decoder_attention_mask"] = torch.cat( |
|
[decoder_attention_mask, decoder_attention_mask.new_ones( |
|
(decoder_attention_mask.shape[0], horizon_length))], |
|
dim=-1, |
|
) |
|
|
|
if "cache_position" in model_kwargs and model_kwargs["cache_position"] is not None: |
|
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + horizon_length |
|
|
|
return model_kwargs |