File size: 2,133 Bytes
d27cb85
 
 
02f490f
 
 
d27cb85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73a0f87
 
 
d27cb85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38f12fe
d27cb85
 
 
 
 
73a0f87
 
 
 
 
 
 
 
 
 
d27cb85
 
 
 
 
 
7ce90f9
d27cb85
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-emotion

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1759
- Accuracy: 0.94
- F1: 0.9401

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.798         | 1.0   | 250  | 0.2630          | 0.9155   | 0.9160 |
| 0.1996        | 2.0   | 500  | 0.1630          | 0.9345   | 0.9345 |
| 0.1324        | 3.0   | 750  | 0.1518          | 0.9385   | 0.9393 |
| 0.1033        | 4.0   | 1000 | 0.1475          | 0.9385   | 0.9385 |
| 0.0858        | 5.0   | 1250 | 0.1434          | 0.942    | 0.9416 |
| 0.0703        | 6.0   | 1500 | 0.1568          | 0.942    | 0.9422 |
| 0.0592        | 7.0   | 1750 | 0.1676          | 0.938    | 0.9380 |
| 0.0499        | 8.0   | 2000 | 0.1693          | 0.936    | 0.9364 |
| 0.0399        | 9.0   | 2250 | 0.1759          | 0.937    | 0.9373 |
| 0.0366        | 10.0  | 2500 | 0.1759          | 0.94     | 0.9401 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1