--- language: - zh license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer base_model: openai/whisper-large-v2 model-index: - name: Whisper large-v2 nan-tw results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 nan-tw type: mozilla-foundation/common_voice_11_0 config: nan-tw split: train args: nan-tw metrics: - type: wer value: 42.592995431803345 name: Wer - type: cer value: 23.297031817211188 name: Cer --- # Whisper large-v2 nan-tw This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co./openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 nan-tw dataset. It achieves the following results on the evaluation set: - Loss: 0.7525 - Wer: 42.5930 - Cer: 23.2970 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.4781 | 1.04 | 1000 | 0.7256 | 52.4690 | 28.7583 | | 0.1881 | 2.08 | 2000 | 0.7346 | 50.2067 | 26.6389 | | 0.0429 | 3.13 | 3000 | 0.7094 | 45.3557 | 24.7811 | | 0.0112 | 5.01 | 4000 | 0.7416 | 44.4203 | 24.6850 | | 0.0011 | 6.05 | 5000 | 0.7525 | 42.5930 | 23.2970 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2