File size: 3,580 Bytes
54fba1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
license: openrail++
base_model: runwayml/stable-diffusion-v1-5
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
inference: false
---
# SDXL-controlnet: Canny
These are controlnet weights trained on [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co./stabilityai/stable-diffusion-xl-base-1.0) with canny conditioning. You can find some example images in the following.
prompt: a couple watching a romantic sunset, 4k photo
![images_0)](./out_couple.png)
prompt: ultrarealistic shot of a furry blue bird
![images_1)](./out_bird.png)
prompt: a woman, close up, detailed, beautiful, street photography, photorealistic, detailed, Kodak ektar 100, natural, candid shot
![images_2)](./out_women.png)
prompt: Cinematic, neoclassical table in the living room, cinematic, contour, lighting, highly detailed, winter, golden hour
![images_3)](./out_room.png)
prompt: a tornado hitting grass field, 1980's film grain. overcast, muted colors.
![images_0)](./out_tornado.png)
## Usage
Make sure to first install the libraries:
```bash
pip install accelerate transformers safetensors opencv-python diffusers
```
And then we're ready to go:
```python
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers.utils import load_image
from PIL import Image
import torch
import numpy as np
import cv2
prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
negative_prompt = 'low quality, bad quality, sketches'
image = load_image("https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png")
controlnet_conditioning_scale = 0.5 # recommended for good generalization
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-canny-sdxl-1.0",
torch_dtype=torch.float16
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
controlnet=controlnet,
vae=vae,
torch_dtype=torch.float16,
)
pipe.enable_model_cpu_offload()
image = np.array(image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = Image.fromarray(image)
images = pipe(
prompt, negative_prompt=negative_prompt, image=image, controlnet_conditioning_scale=controlnet_conditioning_scale,
).images
images[0].save(f"hug_lab.png")
```
![images_10)](./out_hug_lab_7.png)
To more details, check out the official documentation of [`StableDiffusionXLControlNetPipeline`](https://huggingface.co./docs/diffusers/main/en/api/pipelines/controlnet_sdxl).
### Training
Our training script was built on top of the official training script that we provide [here](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md).
#### Training data
This checkpoint was first trained for 20,000 steps on laion 6a resized to a max minimum dimension of 384.
It was then further trained for 20,000 steps on laion 6a resized to a max minimum dimension of 1024 and
then filtered to contain only minimum 1024 images. We found the further high resolution finetuning was
necessary for image quality.
#### Compute
one 8xA100 machine
#### Batch size
Data parallel with a single gpu batch size of 8 for a total batch size of 64.
#### Hyper Parameters
Constant learning rate of 1e-4 scaled by batch size for total learning rate of 64e-4
#### Mixed precision
fp16 |