---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.3
model-index:
- name: Mistral-7B-v0.3-deide-phi
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: mistralai/Mistral-7B-v0.3
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: thewimo/german-medical-identification-dataset-v0.1
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.2
output_dir: ./outputs/lora-out
hub_model_id: thewimo/Mistral-7B-v0.3-deide-phi
adapter: lora
lora_model_dir:
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: axolotl-runs
wandb_entity: thewind-mom-finetuning
wandb_watch:
wandb_name: Mistral-7B-v0.3-deide-phi
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 4
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
# Mistral-7B-v0.3-deide-phi
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co./mistralai/Mistral-7B-v0.3) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0364
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 4
- total_train_batch_size: 48
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.9682 | 0.0506 | 1 | 2.0579 |
| 1.2784 | 0.2532 | 5 | 0.8308 |
| 0.187 | 0.5063 | 10 | 0.1732 |
| 0.1094 | 0.7595 | 15 | 0.0819 |
| 0.0542 | 1.0127 | 20 | 0.0593 |
| 0.0354 | 1.2658 | 25 | 0.0521 |
| 0.0493 | 1.5190 | 30 | 0.0457 |
| 0.038 | 1.7722 | 35 | 0.0432 |
| 0.0143 | 2.0253 | 40 | 0.0425 |
| 0.0269 | 2.2785 | 45 | 0.0423 |
| 0.0273 | 2.5316 | 50 | 0.0415 |
| 0.0277 | 2.7848 | 55 | 0.0366 |
| 0.0288 | 3.0380 | 60 | 0.0356 |
| 0.0241 | 3.2911 | 65 | 0.0358 |
| 0.0125 | 3.5443 | 70 | 0.0362 |
| 0.0164 | 3.7975 | 75 | 0.0364 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.1.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1