--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: mistralai/Mistral-7B-v0.3 model-index: - name: Mistral-7B-v0.3-deide-phi results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-v0.3 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: true load_in_4bit: false strict: false datasets: - path: thewimo/german-medical-identification-dataset-v0.1 type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.2 output_dir: ./outputs/lora-out hub_model_id: thewimo/Mistral-7B-v0.3-deide-phi adapter: lora lora_model_dir: sequence_len: 4096 sample_packing: false pad_to_sequence_len: true lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: axolotl-runs wandb_entity: thewind-mom-finetuning wandb_watch: wandb_name: Mistral-7B-v0.3-deide-phi wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 4 num_epochs: 4 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# Mistral-7B-v0.3-deide-phi This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co./mistralai/Mistral-7B-v0.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 4 - total_train_batch_size: 48 - total_eval_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.9682 | 0.0506 | 1 | 2.0579 | | 1.2784 | 0.2532 | 5 | 0.8308 | | 0.187 | 0.5063 | 10 | 0.1732 | | 0.1094 | 0.7595 | 15 | 0.0819 | | 0.0542 | 1.0127 | 20 | 0.0593 | | 0.0354 | 1.2658 | 25 | 0.0521 | | 0.0493 | 1.5190 | 30 | 0.0457 | | 0.038 | 1.7722 | 35 | 0.0432 | | 0.0143 | 2.0253 | 40 | 0.0425 | | 0.0269 | 2.2785 | 45 | 0.0423 | | 0.0273 | 2.5316 | 50 | 0.0415 | | 0.0277 | 2.7848 | 55 | 0.0366 | | 0.0288 | 3.0380 | 60 | 0.0356 | | 0.0241 | 3.2911 | 65 | 0.0358 | | 0.0125 | 3.5443 | 70 | 0.0362 | | 0.0164 | 3.7975 | 75 | 0.0364 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.1.2+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1