thesven commited on
Commit
b04efd1
1 Parent(s): 0c58b66

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +298 -103
README.md CHANGED
@@ -1,199 +1,394 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
43
 
44
- [More Information Needed]
 
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
55
 
56
- [More Information Needed]
 
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
61
 
62
- [More Information Needed]
 
 
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
73
 
74
- [More Information Needed]
 
75
 
76
- ## Training Details
77
 
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
81
 
82
- [More Information Needed]
 
 
 
 
 
 
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
 
 
89
 
90
- [More Information Needed]
 
 
91
 
 
 
92
 
93
- #### Training Hyperparameters
 
 
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
 
96
 
97
- #### Speeds, Sizes, Times [optional]
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
 
 
 
 
100
 
101
- [More Information Needed]
 
 
102
 
103
- ## Evaluation
 
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
 
 
 
 
 
 
 
 
 
 
 
106
 
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
 
 
 
 
 
112
 
113
- [More Information Needed]
 
 
 
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
 
 
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
 
124
 
125
- [More Information Needed]
 
126
 
127
- ### Results
 
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
132
 
 
 
 
133
 
 
134
 
135
- ## Model Examination [optional]
 
 
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
 
 
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
 
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
 
 
158
 
159
- ### Compute Infrastructure
 
 
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
164
 
165
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
170
 
171
- ## Citation [optional]
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
 
178
 
179
- **APA:**
 
 
 
 
 
 
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
186
 
187
- [More Information Needed]
 
 
188
 
189
- ## More Information [optional]
 
190
 
191
- [More Information Needed]
 
 
192
 
193
- ## Model Card Authors [optional]
 
 
 
 
194
 
195
- [More Information Needed]
 
196
 
197
- ## Model Card Contact
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
 
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ extra_gated_description: >-
4
+ If you want to learn more about how we process your personal data, please read
5
+ our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
6
+ tags:
7
+ - gptq
8
+ - quantized
9
+ - auto-gptq
10
+ - 4bit
11
  ---
12
 
13
+ ## Mistral 7B Instruct v0.3 GPTQ 4bit
14
+ This is a 4bit GPTQ Quantization of the Mistral 7B Instruct v0.3 model
15
+ The model has been quantized using auto-gptq with a custom dataset.
16
 
17
+ # Model Card for Mistral-7B-Instruct-v0.3
18
 
19
+ The Mistral-7B-Instruct-v0.3 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.3.
20
 
21
+ Mistral-7B-v0.3 has the following changes compared to [Mistral-7B-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2/edit/main/README.md)
22
+ - Extended vocabulary to 32768
23
+ - Supports v3 Tokenizer
24
+ - Supports function calling
25
 
26
+ ## Installation
27
 
28
+ It is recommended to use `mistralai/Mistral-7B-Instruct-v0.3` with [mistral-inference](https://github.com/mistralai/mistral-inference). For HF transformers code snippets, please keep scrolling.
29
 
30
+ ```
31
+ pip install mistral_inference
32
+ ```
33
 
34
+ ## Download
35
 
36
+ ```py
37
+ from huggingface_hub import snapshot_download
38
+ from pathlib import Path
 
 
 
 
39
 
40
+ mistral_models_path = Path.home().joinpath('mistral_models', '7B-Instruct-v0.3')
41
+ mistral_models_path.mkdir(parents=True, exist_ok=True)
42
 
43
+ snapshot_download(repo_id="mistralai/Mistral-7B-Instruct-v0.3", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path)
44
+ ```
45
 
46
+ ### Chat
 
 
47
 
48
+ After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using
49
 
50
+ ```
51
+ mistral-chat $HOME/mistral_models/7B-Instruct-v0.3 --instruct --max_tokens 256
52
+ ```
53
 
54
+ ### Instruct following
55
 
56
+ ```py
57
+ from mistral_inference.model import Transformer
58
+ from mistral_inference.generate import generate
59
 
60
+ from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
61
+ from mistral_common.protocol.instruct.messages import UserMessage
62
+ from mistral_common.protocol.instruct.request import ChatCompletionRequest
63
 
 
64
 
65
+ tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
66
+ model = Transformer.from_folder(mistral_models_path)
67
 
68
+ completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")])
69
 
70
+ tokens = tokenizer.encode_chat_completion(completion_request).tokens
71
 
72
+ out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
73
+ result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
74
 
75
+ print(result)
76
+ ```
77
 
78
+ ### Function calling
79
 
80
+ ```py
81
+ from mistral_common.protocol.instruct.tool_calls import Function, Tool
82
+ from mistral_inference.model import Transformer
83
+ from mistral_inference.generate import generate
84
 
85
+ from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
86
+ from mistral_common.protocol.instruct.messages import UserMessage
87
+ from mistral_common.protocol.instruct.request import ChatCompletionRequest
88
 
 
89
 
90
+ tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
91
+ model = Transformer.from_folder(mistral_models_path)
92
 
93
+ completion_request = ChatCompletionRequest(
94
+ tools=[
95
+ Tool(
96
+ function=Function(
97
+ name="get_current_weather",
98
+ description="Get the current weather",
99
+ parameters={
100
+ "type": "object",
101
+ "properties": {
102
+ "location": {
103
+ "type": "string",
104
+ "description": "The city and state, e.g. San Francisco, CA",
105
+ },
106
+ "format": {
107
+ "type": "string",
108
+ "enum": ["celsius", "fahrenheit"],
109
+ "description": "The temperature unit to use. Infer this from the users location.",
110
+ },
111
+ },
112
+ "required": ["location", "format"],
113
+ },
114
+ )
115
+ )
116
+ ],
117
+ messages=[
118
+ UserMessage(content="What's the weather like today in Paris?"),
119
+ ],
120
+ )
121
 
122
+ tokens = tokenizer.encode_chat_completion(completion_request).tokens
123
 
124
+ out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
125
+ result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
126
 
127
+ print(result)
128
+ ```
129
 
130
+ ## Generate with `transformers`
131
 
132
+ If you want to use Hugging Face `transformers` to generate text, you can do something like this.
133
 
134
+ ```py
135
+ from transformers import pipeline
136
 
137
+ messages = [
138
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
139
+ {"role": "user", "content": "Who are you?"},
140
+ ]
141
+ chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.3")
142
+ chatbot(messages)
143
+ ```
144
 
 
145
 
146
+ ## Function calling with `transformers`
147
 
148
+ To use this example, you'll need `transformers` version 4.42.0 or higher. Please see the
149
+ [function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling)
150
+ in the `transformers` docs for more information.
151
 
152
+ ```python
153
+ from transformers import AutoModelForCausalLM, AutoTokenizer
154
+ import torch
155
 
156
+ model_id = "mistralai/Mistral-7B-Instruct-v0.3"
157
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
158
 
159
+ def get_current_weather(location: str, format: str):
160
+ """
161
+ Get the current weather
162
 
163
+ Args:
164
+ location: The city and state, e.g. San Francisco, CA
165
+ format: The temperature unit to use. Infer this from the users location. (choices: ["celsius", "fahrenheit"])
166
+ """
167
+ pass
168
 
169
+ conversation = [{"role": "user", "content": "What's the weather like in Paris?"}]
170
+ tools = [get_current_weather]
171
 
172
+ # render the tool use prompt as a string:
173
+ tool_use_prompt = tokenizer.apply_chat_template(
174
+ conversation,
175
+ tools=tools,
176
+ tokenize=False,
177
+ add_generation_prompt=True,
178
+ )
179
 
180
+ inputs = tokenizer(tool_use_prompt, return_tensors="pt")
181
+
182
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
183
 
184
+ outputs = model.generate(**inputs, max_new_tokens=1000)
185
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
186
+ ```
187
 
188
+ Note that, for reasons of space, this example does not show a complete cycle of calling a tool and adding the tool call and tool
189
+ results to the chat history so that the model can use them in its next generation. For a full tool calling example, please
190
+ see the [function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling),
191
+ and note that Mistral **does** use tool call IDs, so these must be included in your tool calls and tool results. They should be
192
+ exactly 9 alphanumeric characters.
193
+
194
+
195
+ ## Limitations
196
+
197
+ The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
198
+ It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
199
+ make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
200
 
201
+ ## The Mistral AI Team
202
 
203
+ Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Jean-Malo Delignon, Jia Li, Justus Murke, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Nicolas Schuhl, Patrick von Platen, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibaut Lavril, Timothée Lacroix, Théophile Gervet, Thomas Wang, Valera Nemychnikova, William El Sayed, William Marshall
204
 
205
+ extra_gated_description: If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
206
+ ---
207
+
208
+ # Model Card for Mistral-7B-Instruct-v0.3
209
+
210
+ The Mistral-7B-Instruct-v0.3 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.3.
211
 
212
+ Mistral-7B-v0.3 has the following changes compared to [Mistral-7B-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2/edit/main/README.md)
213
+ - Extended vocabulary to 32768
214
+ - Supports v3 Tokenizer
215
+ - Supports function calling
216
 
217
+ ## Installation
218
 
219
+ It is recommended to use `mistralai/Mistral-7B-Instruct-v0.3` with [mistral-inference](https://github.com/mistralai/mistral-inference). For HF transformers code snippets, please keep scrolling.
220
 
221
+ ```
222
+ pip install mistral_inference
223
+ ```
224
 
225
+ ## Download
226
 
227
+ ```py
228
+ from huggingface_hub import snapshot_download
229
+ from pathlib import Path
230
 
231
+ mistral_models_path = Path.home().joinpath('mistral_models', '7B-Instruct-v0.3')
232
+ mistral_models_path.mkdir(parents=True, exist_ok=True)
233
 
234
+ snapshot_download(repo_id="mistralai/Mistral-7B-Instruct-v0.3", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path)
235
+ ```
236
 
237
+ ### Chat
238
 
239
+ After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using
240
 
241
+ ```
242
+ mistral-chat $HOME/mistral_models/7B-Instruct-v0.3 --instruct --max_tokens 256
243
+ ```
244
 
245
+ ### Instruct following
246
 
247
+ ```py
248
+ from mistral_inference.model import Transformer
249
+ from mistral_inference.generate import generate
250
 
251
+ from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
252
+ from mistral_common.protocol.instruct.messages import UserMessage
253
+ from mistral_common.protocol.instruct.request import ChatCompletionRequest
254
 
 
255
 
256
+ tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
257
+ model = Transformer.from_folder(mistral_models_path)
258
 
259
+ completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")])
260
 
261
+ tokens = tokenizer.encode_chat_completion(completion_request).tokens
262
 
263
+ out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
264
+ result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
 
 
 
265
 
266
+ print(result)
267
+ ```
268
 
269
+ ### Function calling
270
 
271
+ ```py
272
+ from mistral_common.protocol.instruct.tool_calls import Function, Tool
273
+ from mistral_inference.model import Transformer
274
+ from mistral_inference.generate import generate
275
 
276
+ from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
277
+ from mistral_common.protocol.instruct.messages import UserMessage
278
+ from mistral_common.protocol.instruct.request import ChatCompletionRequest
279
 
 
280
 
281
+ tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
282
+ model = Transformer.from_folder(mistral_models_path)
283
 
284
+ completion_request = ChatCompletionRequest(
285
+ tools=[
286
+ Tool(
287
+ function=Function(
288
+ name="get_current_weather",
289
+ description="Get the current weather",
290
+ parameters={
291
+ "type": "object",
292
+ "properties": {
293
+ "location": {
294
+ "type": "string",
295
+ "description": "The city and state, e.g. San Francisco, CA",
296
+ },
297
+ "format": {
298
+ "type": "string",
299
+ "enum": ["celsius", "fahrenheit"],
300
+ "description": "The temperature unit to use. Infer this from the users location.",
301
+ },
302
+ },
303
+ "required": ["location", "format"],
304
+ },
305
+ )
306
+ )
307
+ ],
308
+ messages=[
309
+ UserMessage(content="What's the weather like today in Paris?"),
310
+ ],
311
+ )
312
 
313
+ tokens = tokenizer.encode_chat_completion(completion_request).tokens
314
 
315
+ out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
316
+ result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
317
 
318
+ print(result)
319
+ ```
320
 
321
+ ## Generate with `transformers`
322
 
323
+ If you want to use Hugging Face `transformers` to generate text, you can do something like this.
324
 
325
+ ```py
326
+ from transformers import pipeline
327
 
328
+ messages = [
329
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
330
+ {"role": "user", "content": "Who are you?"},
331
+ ]
332
+ chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.3")
333
+ chatbot(messages)
334
+ ```
335
 
 
336
 
337
+ ## Function calling with `transformers`
338
 
339
+ To use this example, you'll need `transformers` version 4.42.0 or higher. Please see the
340
+ [function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling)
341
+ in the `transformers` docs for more information.
342
 
343
+ ```python
344
+ from transformers import AutoModelForCausalLM, AutoTokenizer
345
+ import torch
346
 
347
+ model_id = "mistralai/Mistral-7B-Instruct-v0.3"
348
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
349
 
350
+ def get_current_weather(location: str, format: str):
351
+ """
352
+ Get the current weather
353
 
354
+ Args:
355
+ location: The city and state, e.g. San Francisco, CA
356
+ format: The temperature unit to use. Infer this from the users location. (choices: ["celsius", "fahrenheit"])
357
+ """
358
+ pass
359
 
360
+ conversation = [{"role": "user", "content": "What's the weather like in Paris?"}]
361
+ tools = [get_current_weather]
362
 
363
+ # render the tool use prompt as a string:
364
+ tool_use_prompt = tokenizer.apply_chat_template(
365
+ conversation,
366
+ tools=tools,
367
+ tokenize=False,
368
+ add_generation_prompt=True,
369
+ )
370
+
371
+ inputs = tokenizer(tool_use_prompt, return_tensors="pt")
372
+
373
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
374
+
375
+ outputs = model.generate(**inputs, max_new_tokens=1000)
376
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
377
+ ```
378
+
379
+ Note that, for reasons of space, this example does not show a complete cycle of calling a tool and adding the tool call and tool
380
+ results to the chat history so that the model can use them in its next generation. For a full tool calling example, please
381
+ see the [function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling),
382
+ and note that Mistral **does** use tool call IDs, so these must be included in your tool calls and tool results. They should be
383
+ exactly 9 alphanumeric characters.
384
+
385
+
386
+ ## Limitations
387
+
388
+ The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
389
+ It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
390
+ make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
391
+
392
+ ## The Mistral AI Team
393
 
394
+ Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Jean-Malo Delignon, Jia Li, Justus Murke, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Nicolas Schuhl, Patrick von Platen, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibaut Lavril, Timothée Lacroix, Théophile Gervet, Thomas Wang, Valera Nemychnikova, William El Sayed, William Marshall