File size: 4,179 Bytes
bbf786b 2ec0b2e 7b2c007 bbf786b 2a70644 bbf786b 6f8ea24 bbf786b 7b2c007 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
- sft
base_model: unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit
model-index:
- name: ReWiz-Nemo-12B-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 10.62
name: strict accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Nemo-12B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 29.93
name: normalized accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Nemo-12B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 7.18
name: exact match
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Nemo-12B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.84
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Nemo-12B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 10.23
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Nemo-12B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 25.99
name: accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Nemo-12B-Instruct
name: Open LLM Leaderboard
---
<img src="https://huggingface.co./theprint/ReWiz-Llama-3.2-3B/resolve/main/ReWiz_banner.png">
Half the data was geared towards better reasoning (EvolKit-20k and reasoning-base-20k), the other half will help to de-censor the model (WizardLM data set).
# Looking for GGUF?
There is a separate upload for that! Download [theprint/ReWiz-Nemo-12B-Instruct-GGUF](https://huggingface.co./theprint/ReWiz-Nemo-12B-Instruct-GGUF) instead.
# Uploaded model
- **Developed by:** theprint
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_theprint__ReWiz-Nemo-12B-Instruct)
| Metric |Value|
|-------------------|----:|
|Avg. |15.63|
|IFEval (0-Shot) |10.62|
|BBH (3-Shot) |29.93|
|MATH Lvl 5 (4-Shot)| 7.18|
|GPQA (0-shot) | 9.84|
|MuSR (0-shot) |10.23|
|MMLU-PRO (5-shot) |25.99|
|