--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[:10%] args: en-US metrics: - name: Wer type: wer value: 0.3569482288828338 --- # whisper-tiny This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.4068 - Wer: 0.3569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.61 | 0.35 | 20 | 0.4505 | 0.3556 | | 0.4124 | 0.7 | 40 | 0.4167 | 0.3542 | | 0.3163 | 1.05 | 60 | 0.4068 | 0.3569 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3