--- library_name: transformers license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - generated_from_trainer datasets: - gtzan model-index: - name: hubert-model-v1 results: [] --- # hubert-model-v1 This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co./facebook/hubert-base-ls960) on the gtzan dataset. It achieves the following results on the evaluation set: - eval_loss: 2.1979 - eval_accuracy: 0.245 - eval_precision: 0.2882 - eval_recall: 0.245 - eval_f1: 0.1828 - eval_runtime: 105.666 - eval_samples_per_second: 1.893 - eval_steps_per_second: 0.473 - epoch: 1.0 - step: 25 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0