---
license: afl-3.0
language:
- en
widget:
- text: >-
You are a helpful chatbot name StanWhat's my
name?
example_title: Who am I?
- text: >-
You are a helpful chatbot name StanHow to make a
campfire
example_title: Tutorial
datasets:
- Dahoas/instruct-synthetic-prompt-responses
- openai/webgpt_comparisons
- squad_v2
- samsum
- allenai/soda
- xsum
- multi_news
- cnn_dailymail
- scitldr
- billsum
pipeline_tag: text-generation
tags:
- finance
---
# Supervised Finetuning demonstration
Models are finetuned on generated conversation curated from the [Open Assistant](https://github.com/LAION-AI/Open-Assistant).
**This model was finetune for only 2,000 iterations, uploaded for ease of sharing only.**
# Mixing reward model with sampling
We can use reward model to rank the best answer using this example code:
```
import torch
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("theblackcat102/galactica-1.3b-v2")
model = AutoModelForCausalLM.from_pretrained("theblackcat102/galactica-1.3b-v2").eval().half().cuda()
reward_name = "OpenAssistant/reward-model-deberta-v3-large"
rank_model, rank_tokenizer = AutoModelForSequenceClassification.from_pretrained(reward_name), AutoTokenizer.from_pretrained(reward_name)
rank_model = rank_model.eval().half().cuda()
questions = ["You are a helpful chatbot call AgnesHow do I make a resume?"]
for question in questions:
inputs = tokenizer(question, return_tensors="pt", padding=True).to(0)
if 'token_type_ids' in inputs:
inputs.pop('token_type_ids')
outputs = model.generate(**inputs, do_sample=True,
top_k=60,
max_length=220,
num_return_sequences=80,
early_stopping=True
)
print(question)
results = []
for i, beam_output in enumerate(outputs):
output = tokenizer.decode(beam_output, truncate_before_pattern=[r"\n\n^#", "^'''", "\n\n\n"])
question, answer = output.split('', maxsplit=1)
answer = answer.split('')[0].replace('<|endoftext|>', '').lstrip().split('')[0]
rank_inputs = rank_tokenizer(question, answer, return_tensors="pt", padding=True, max_length=512, truncation=True).to(1)
score = rank_model(**rank_inputs).logits[0].cpu().detach()
results.append((answer, score, output))
full_results[question] = results
sorted_result = sorted(results, key=lambda x:x[1], reverse=True)
total_scores += sorted_result[0][1].item()
print('score',sorted_result[0][1].item())
print('-----Best rank-----')
print(sorted_result[0][0])
print('-------------------')
```
This work is done under the [Open Assistant](https://github.com/LAION-AI/Open-Assistant) initiative which democratize open source AI assistant. Feel free to join discord and contribute to github!
Thanks to [BASIC lab](https://basiclab.lab.nycu.edu.tw/Yummy/index.html#) for compute resource. BASIC Lab is an academic research lab which focuses in multi-modality learning and data mining domain.