{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbe1dc038a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678283955986951092, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAC38GL64QPQ6B0mbtN7iMzK90zu8ZtQBNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVPRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIn3JMFndGb0CUhpRSlIwBbJRLzIwBdJRHQKOpIcqe9SN1fZQoaAZoCWgPQwhTW+og70VwQJSGlFKUaBVL52gWR0Cjq6YhEBsAdX2UKGgGaAloD0MI2xX6YJkhcUCUhpRSlGgVS/RoFkdAo6xcJ4SpSHV9lChoBmgJaA9DCGb4TzcQsXBAlIaUUpRoFUv0aBZHQKOtAnG82751fZQoaAZoCWgPQwhzE7U0d1ByQJSGlFKUaBVL1mgWR0CjrZcjAzpHdX2UKGgGaAloD0MIG9XpQFYAc0CUhpRSlGgVS/5oFkdAo6+/7gsK9nV9lChoBmgJaA9DCKgeaXBb+29AlIaUUpRoFUvfaBZHQKOwVw/gR9R1fZQoaAZoCWgPQwjbwYh9Qq5xQJSGlFKUaBVL9mgWR0CjsPkXDWK/dX2UKGgGaAloD0MIfHvXoO8Hc0CUhpRSlGgVS+5oFkdAo7GaMNtqH3V9lChoBmgJaA9DCCDxK9awNHFAlIaUUpRoFUv7aBZHQKOzyEC/47B1fZQoaAZoCWgPQwjiIYyfBsxwQJSGlFKUaBVNoANoFkdAo7aHjp9qlHV9lChoBmgJaA9DCLoVwmpsunJAlIaUUpRoFU0cAWgWR0CjuM+glF+edX2UKGgGaAloD0MIY2NeRxylcUCUhpRSlGgVTQgBaBZHQKO5jiHZbpx1fZQoaAZoCWgPQwjZlZaReoRjQJSGlFKUaBVN6ANoFkdAo78v7Lt/nXV9lChoBmgJaA9DCMkFZ/D34HFAlIaUUpRoFUvqaBZHQKPAD8NQTEl1fZQoaAZoCWgPQwjRBmADYjlwQJSGlFKUaBVL02gWR0CjwNDWTX8PdX2UKGgGaAloD0MIwvaTMT4UckCUhpRSlGgVS9hoFkdAo8O0vugHvHV9lChoBmgJaA9DCJz8Fp3sQnFAlIaUUpRoFUvNaBZHQKPEfW5paid1fZQoaAZoCWgPQwhN9PkoI61yQJSGlFKUaBVNlwFoFkdAo8Y0tAcDKnV9lChoBmgJaA9DCBGMg0tHlmRAlIaUUpRoFU3oA2gWR0Cjy9PbXYlIdX2UKGgGaAloD0MIou9uZYmscECUhpRSlGgVS9toFkdAo8xoxtYSx3V9lChoBmgJaA9DCFT83xEVkXFAlIaUUpRoFUv2aBZHQKPOlF72L511fZQoaAZoCWgPQwioc0UpYdtwQJSGlFKUaBVN+wFoFkdAo9AwSYgJTnV9lChoBmgJaA9DCOyGbYsyCG9AlIaUUpRoFUvRaBZHQKPQvXzUZvV1fZQoaAZoCWgPQwguceSBiJZwQJSGlFKUaBVL12gWR0Cj0sziCJ40dX2UKGgGaAloD0MISS7/Ib0Nc0CUhpRSlGgVTRgBaBZHQKPThbvgFX91fZQoaAZoCWgPQwiMuWsJOQhxQJSGlFKUaBVLzGgWR0Cj1AxCIDYAdX2UKGgGaAloD0MIb2JITuZ0cUCUhpRSlGgVS8toFkdAo9SUO3DvVnV9lChoBmgJaA9DCEMCRpe3tG9AlIaUUpRoFUvuaBZHQKPVMAH3UQV1fZQoaAZoCWgPQwjwoq8gzfdyQJSGlFKUaBVL9mgWR0Cj11oIWxhVdX2UKGgGaAloD0MIMCsU6f5qc0CUhpRSlGgVTQ8BaBZHQKPYHhpg1FZ1fZQoaAZoCWgPQwilhcsqLKpxQJSGlFKUaBVNEQFoFkdAo9jo13t8eHV9lChoBmgJaA9DCB+fkJ037nBAlIaUUpRoFUvwaBZHQKPZiieumrN1fZQoaAZoCWgPQwiLxW8K6/JxQJSGlFKUaBVL7mgWR0Cj27GVJL/TdX2UKGgGaAloD0MIAcEcPf4LcUCUhpRSlGgVS/9oFkdAo9yfNJOFg3V9lChoBmgJaA9DCBgip6+nb3FAlIaUUpRoFUv9aBZHQKPdihJRO1x1fZQoaAZoCWgPQwiln3B2q8ByQJSGlFKUaBVL/2gWR0Cj3oYrJ8v3dX2UKGgGaAloD0MIdmuZDMfbcECUhpRSlGgVS9VoFkdAo+Fq4nWrfnV9lChoBmgJaA9DCLeZCvEImXFAlIaUUpRoFUvXaBZHQKPiPPHktEp1fZQoaAZoCWgPQwgRGVbxRvJxQJSGlFKUaBVNAQFoFkdAo+NA7cO9WnV9lChoBmgJaA9DCOl8eJZgjHBAlIaUUpRoFUvlaBZHQKPkIfnOjZd1fZQoaAZoCWgPQwj+74gKVSNyQJSGlFKUaBVL+WgWR0Cj5osQVbiZdX2UKGgGaAloD0MIF9nO99O4ckCUhpRSlGgVS9RoFkdAo+cZE8aGYnV9lChoBmgJaA9DCIFaDB5mCHJAlIaUUpRoFUvoaBZHQKPntpxFRYR1fZQoaAZoCWgPQwgqkNlZ9NRxQJSGlFKUaBVL+GgWR0Cj6HHd43WGdX2UKGgGaAloD0MIcM0d/S+ncUCUhpRSlGgVTRkBaBZHQKPqtaB7NSt1fZQoaAZoCWgPQwgzxLEuLjhxQJSGlFKUaBVLyWgWR0Cj6z9si0OWdX2UKGgGaAloD0MI9gt2w/a+cECUhpRSlGgVS+xoFkdAo+vhsMy8BnV9lChoBmgJaA9DCE27mGZ6vnFAlIaUUpRoFUvgaBZHQKPsdocJdB11fZQoaAZoCWgPQwiumueIvCVyQJSGlFKUaBVL4WgWR0Cj7Rf1xsEadX2UKGgGaAloD0MILZW3I9wGckCUhpRSlGgVTUIBaBZHQKPvh+uvECN1fZQoaAZoCWgPQwjAP6VK1DJwQJSGlFKUaBVNRAFoFkdAo/B2yeI2wXV9lChoBmgJaA9DCJNS0O2lpHFAlIaUUpRoFUv2aBZHQKPxIXokiUx1fZQoaAZoCWgPQwjUYYVbPhNyQJSGlFKUaBVNZgFoFkdAo/Ob7CSA6XV9lChoBmgJaA9DCJ5+UBcpZm9AlIaUUpRoFUvYaBZHQKP0MBg/keZ1fZQoaAZoCWgPQwhSf73CAhdxQJSGlFKUaBVL92gWR0Cj9NYU34sVdX2UKGgGaAloD0MIEoPAyiFNb0CUhpRSlGgVTQMBaBZHQKP1ieCCjDd1fZQoaAZoCWgPQwiamZmZ2ZFxQJSGlFKUaBVNPQFoFkdAo/fwexOclXV9lChoBmgJaA9DCCKNCpys6HBAlIaUUpRoFU0aAWgWR0Cj+LeFcpsodX2UKGgGaAloD0MI+S06WWqDbkCUhpRSlGgVS9hoFkdAo/lxoXbdrXV9lChoBmgJaA9DCFFpxMw+MXBAlIaUUpRoFUvIaBZHQKP6IOFQEZB1fZQoaAZoCWgPQwheZW1TPOduQJSGlFKUaBVL2GgWR0Cj+tzMA3kxdX2UKGgGaAloD0MIn47HDFSBcUCUhpRSlGgVTRcBaBZHQKP9/mvGIbh1fZQoaAZoCWgPQwjAlIEDWqFxQJSGlFKUaBVNCgFoFkdAo/8Rdld1MnV9lChoBmgJaA9DCDuJCP+icnFAlIaUUpRoFU37AWgWR0CkAysuvlltdX2UKGgGaAloD0MIQ41Ckll6cECUhpRSlGgVTQYBaBZHQKQD4ZlWfbt1fZQoaAZoCWgPQwgXuDzWDO1xQJSGlFKUaBVNYANoFkdApAgMpw0fo3V9lChoBmgJaA9DCIGv6NardnNAlIaUUpRoFU0nAWgWR0CkCNeWWyC4dX2UKGgGaAloD0MIG7luSvnZcUCUhpRSlGgVTWwBaBZHQKQJ8otL+P11fZQoaAZoCWgPQwg17s1vmBRTQJSGlFKUaBVLpGgWR0CkCl3m3fALdX2UKGgGaAloD0MIvw8HCRFwc0CUhpRSlGgVS+loFkdApAx98/lhgHV9lChoBmgJaA9DCCKNCpwsiXFAlIaUUpRoFUvWaBZHQKQNCv8qFyt1fZQoaAZoCWgPQwhkA+liU4huQJSGlFKUaBVNBAFoFkdApA3HHmzSkXV9lChoBmgJaA9DCKZEEr2MMWNAlIaUUpRoFU3oA2gWR0CkEvFz2exwdX2UKGgGaAloD0MISE4mbpXQb0CUhpRSlGgVS/poFkdApBOj5/LDAXV9lChoBmgJaA9DCOvjoe9uXm5AlIaUUpRoFUvdaBZHQKQVuYrJ8v51fZQoaAZoCWgPQwhbJO1G39ZwQJSGlFKUaBVL6WgWR0CkFmumixmkdX2UKGgGaAloD0MIEZAvocIRcECUhpRSlGgVS+1oFkdApBdIzFdcB3V9lChoBmgJaA9DCJM6AU2EVnFAlIaUUpRoFUvjaBZHQKQYFuXNTtN1fZQoaAZoCWgPQwhH6Gfq9b1xQJSGlFKUaBVNSwFoFkdApBt0IzFdcHV9lChoBmgJaA9DCPM9IxFaD3BAlIaUUpRoFUvaaBZHQKQcSvicXnB1fZQoaAZoCWgPQwhPO/w1WUdxQJSGlFKUaBVL+WgWR0CkHVN5UtI1dX2UKGgGaAloD0MIxt/2BIlzcECUhpRSlGgVS+BoFkdApB45RuTA33V9lChoBmgJaA9DCNbkKavpLXFAlIaUUpRoFUv5aBZHQKQfK5iExqR1fZQoaAZoCWgPQwgZPbfQFelxQJSGlFKUaBVNCwFoFkdApCFzYAbQ1XV9lChoBmgJaA9DCIZ0eAjjWnFAlIaUUpRoFUvsaBZHQKQiFM495hV1fZQoaAZoCWgPQwgvppnu9fBnQJSGlFKUaBVN6ANoFkdApCbbOVxCIHV9lChoBmgJaA9DCHjwEwcQPHBAlIaUUpRoFUvHaBZHQKQnYClrM1V1fZQoaAZoCWgPQwihSWJJucxwQJSGlFKUaBVNDAFoFkdApCgghEBsAXV9lChoBmgJaA9DCA1v1uC91HFAlIaUUpRoFUvjaBZHQKQqNiADq4Z1fZQoaAZoCWgPQwjoLR7ec0ljQJSGlFKUaBVN6ANoFkdApC9fJNj9XXV9lChoBmgJaA9DCGjMJOqFCW9AlIaUUpRoFUvfaBZHQKQv9TGYKIB1fZQoaAZoCWgPQwjkg57N6jZwQJSGlFKUaBVLz2gWR0CkMHxNIsiCdX2UKGgGaAloD0MIGqVL/1IzcUCUhpRSlGgVS/5oFkdApDEltsN2DHV9lChoBmgJaA9DCFeYvtdQMnBAlIaUUpRoFUvpaBZHQKQxu1a4c3l1fZQoaAZoCWgPQwjIJvkRPxlxQJSGlFKUaBVL42gWR0CkNAH1e0HAdX2UKGgGaAloD0MIqgoNxLJqcECUhpRSlGgVS+ZoFkdApDTRXOnl4nV9lChoBmgJaA9DCK7wLhdxMnBAlIaUUpRoFUvtaBZHQKQ1ruXu3MJ1fZQoaAZoCWgPQwjDKt7I/OJxQJSGlFKUaBVL5GgWR0CkNneVC5VfdX2UKGgGaAloD0MIeCXJc325cECUhpRSlGgVS81oFkdApDlvZIxxk3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 9770, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}