thatgeeman
commited on
Commit
·
b999a84
1
Parent(s):
f97c977
Unit 1 v1 LunarLander-v2 with PPO #hfRLU1
Browse files- README.md +37 -0
- config.json +1 -0
- ppo_model.zip +3 -0
- ppo_model/_stable_baselines3_version +1 -0
- ppo_model/data +95 -0
- ppo_model/policy.optimizer.pth +3 -0
- ppo_model/policy.pth +3 -0
- ppo_model/pytorch_variables.pth +3 -0
- ppo_model/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 214.63 +/- 86.52
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f089bdb64c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f089bdb6550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f089bdb65e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f089bdb6670>", "_build": "<function ActorCriticPolicy._build at 0x7f089bdb6700>", "forward": "<function ActorCriticPolicy.forward at 0x7f089bdb6790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f089bdb6820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f089bdb68b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f089bdb6940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f089bdb69d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f089bdb6a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f089bdb6af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f089be2bab0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678138197063909153, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAALWejr69XX48JBtDu8g4hTnuHAe+biNrOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJc6KqAm2bkCUhpRSlIwBbJRNOAGMAXSUR0CiO+yDRMN+dX2UKGgGaAloD0MILlbUYBpLb0CUhpRSlGgVS/5oFkdAoj1VqgyuZHV9lChoBmgJaA9DCLb3qSo0NW9AlIaUUpRoFU0vAWgWR0CiPkrk8zRAdX2UKGgGaAloD0MI8GlOXmTGOECUhpRSlGgVS/ZoFkdAoj8C1Z1V53V9lChoBmgJaA9DCE35EFSNaW5AlIaUUpRoFU0EAWgWR0CiP9SofjjrdX2UKGgGaAloD0MIgBE0ZpJkYECUhpRSlGgVTegDaBZHQKJFBK9PDYR1fZQoaAZoCWgPQwhZiuQrwYFxQJSGlFKUaBVNJQFoFkdAokdIeeWfLHV9lChoBmgJaA9DCEgzFk2ndnFAlIaUUpRoFU09AWgWR0CiSLxiG34LdX2UKGgGaAloD0MIz8DIy5oUMsCUhpRSlGgVS75oFkdAokmP1QIldHV9lChoBmgJaA9DCI/Ey9M5121AlIaUUpRoFU0dAWgWR0CiSubTc6/7dX2UKGgGaAloD0MIUDblCm9DcUCUhpRSlGgVTR4BaBZHQKJMh7kXDWN1fZQoaAZoCWgPQwjYnINnQu9wQJSGlFKUaBVNTgFoFkdAok2inpB5X3V9lChoBmgJaA9DCLB0PjyLX3JAlIaUUpRoFU17AWgWR0CiTttMfzSUdX2UKGgGaAloD0MIcayL22gFbkCUhpRSlGgVTT0BaBZHQKJQkLDQ7cR1fZQoaAZoCWgPQwig/UgRmYJxQJSGlFKUaBVNNQFoFkdAolGNY8uBc3V9lChoBmgJaA9DCG2Oc5vw1GFAlIaUUpRoFU3oA2gWR0CiVoW+GoJidX2UKGgGaAloD0MIGqIKf4YVTECUhpRSlGgVS9NoFkdAolchIg/1QXV9lChoBmgJaA9DCMYxkj1CxUpAlIaUUpRoFUvcaBZHQKJXx0Dlo111fZQoaAZoCWgPQwjiWYKMgAI3QJSGlFKUaBVL1GgWR0CiWQvKlpGndX2UKGgGaAloD0MIu5195cF0ckCUhpRSlGgVTVYBaBZHQKJaKrVe8f51fZQoaAZoCWgPQwjaVrPOOINwQJSGlFKUaBVNTwFoFkdAolszKifxt3V9lChoBmgJaA9DCPje36C9RjlAlIaUUpRoFUvZaBZHQKJb2XXRPXV1fZQoaAZoCWgPQwi5quy7IlBJQJSGlFKUaBVLzmgWR0CiXR3Cbc46dX2UKGgGaAloD0MIsvLLYAxXcUCUhpRSlGgVTQcBaBZHQKJd6gcLjPx1fZQoaAZoCWgPQwhHAg029RRvQJSGlFKUaBVL/2gWR0CiXq4nWrfcdX2UKGgGaAloD0MI6X5OQX7vZECUhpRSlGgVTegDaBZHQKJkPdLQHA11fZQoaAZoCWgPQwiEnPf/cdJvQJSGlFKUaBVNEgFoFkdAomV9lPJq7HV9lChoBmgJaA9DCPLPDOIDUU5AlIaUUpRoFUvOaBZHQKJncOq//Nt1fZQoaAZoCWgPQwg/HY8ZqKxvQJSGlFKUaBVNQwFoFkdAomikAmzBynV9lChoBmgJaA9DCJGcTNyqcG5AlIaUUpRoFU2FAmgWR0Cia+BInSfEdX2UKGgGaAloD0MIjIF1HD9U7L+UhpRSlGgVS8xoFkdAomx595QgtHV9lChoBmgJaA9DCCUk0jb+mkZAlIaUUpRoFUvGaBZHQKJtDpj+aSd1fZQoaAZoCWgPQwgLmSuDKslwQJSGlFKUaBVNOAFoFkdAom4HQla8pXV9lChoBmgJaA9DCBAk7xzKDklAlIaUUpRoFUvOaBZHQKJun8NQTEl1fZQoaAZoCWgPQwjt153ufKdwQJSGlFKUaBVL+2gWR0CicBREv0yydX2UKGgGaAloD0MIB+v/HOYmcUCUhpRSlGgVTQIBaBZHQKJw1euV5bB1fZQoaAZoCWgPQwgcX3tmyVJwQJSGlFKUaBVNYwJoFkdAonPRZ2ZAp3V9lChoBmgJaA9DCC4B+KdUim9AlIaUUpRoFU0IAWgWR0CidJ2n889wdX2UKGgGaAloD0MIf4RhwNLMcECUhpRSlGgVTUABaBZHQKJ1poJRfnh1fZQoaAZoCWgPQwiGxhNBHPlsQJSGlFKUaBVNAAFoFkdAonZqPKdQPHV9lChoBmgJaA9DCMJQhxVuP0tAlIaUUpRoFUvKaBZHQKJ3sEOAiFF1fZQoaAZoCWgPQwhupGyRNFdxQJSGlFKUaBVNJgFoFkdAoniV+TeO43V9lChoBmgJaA9DCC2Y+KOoXXFAlIaUUpRoFU0OAWgWR0CieW6/h2nsdX2UKGgGaAloD0MI121Q+21ycECUhpRSlGgVTSUBaBZHQKJ6U6shgVp1fZQoaAZoCWgPQwiCx7d3DTpGQJSGlFKUaBVLwGgWR0Cie5TP0I1MdX2UKGgGaAloD0MIxanWwixQcUCUhpRSlGgVTUwBaBZHQKJ8/4cm0E51fZQoaAZoCWgPQwh16V+SikZxQJSGlFKUaBVNQQFoFkdAon5uY0EX+HV9lChoBmgJaA9DCMrgKHk1KXJAlIaUUpRoFU1KAWgWR0CigNr3Cbc5dX2UKGgGaAloD0MI16TbEvmIckCUhpRSlGgVTR4BaBZHQKKCI9wFTvR1fZQoaAZoCWgPQwjScwtdibJuQJSGlFKUaBVNPgFoFkdAooOsJ6Y3N3V9lChoBmgJaA9DCA/SU+QQi0FAlIaUUpRoFUvvaBZHQKKElqlgtvp1fZQoaAZoCWgPQwik4v+OqFVvQJSGlFKUaBVNJAFoFkdAooY4IdELIHV9lChoBmgJaA9DCO6Yuiu7M3FAlIaUUpRoFU0/AWgWR0Cih0FocrAhdX2UKGgGaAloD0MIPL69a9BRcUCUhpRSlGgVTXQBaBZHQKKIZUaya/h1fZQoaAZoCWgPQwgSFD/G3EtCQJSGlFKUaBVL12gWR0CiibBIOH32dX2UKGgGaAloD0MILO+qB0ybckCUhpRSlGgVTVoBaBZHQKKKz/Nqxkd1fZQoaAZoCWgPQwgRxk/jXkNvQJSGlFKUaBVNLwFoFkdAoovSlk6LfnV9lChoBmgJaA9DCAspP6l2KXBAlIaUUpRoFU1zAWgWR0CijaaLfk3kdX2UKGgGaAloD0MItf6WAPz/RUCUhpRSlGgVS9ZoFkdAoo5KP+4smXV9lChoBmgJaA9DCJ58emxL9G1AlIaUUpRoFU0ZAWgWR0CijyFar3j/dX2UKGgGaAloD0MIDkqYaXsZb0CUhpRSlGgVTRkCaBZHQKKRw1w5vLp1fZQoaAZoCWgPQwhREaeTbPNGQJSGlFKUaBVL0GgWR0Cikln6MzdldX2UKGgGaAloD0MIUitM32sBcUCUhpRSlGgVTekCaBZHQKKU033Hq/x1fZQoaAZoCWgPQwgAN4sXy7NxQJSGlFKUaBVNIwFoFkdAopZmH8CPqHV9lChoBmgJaA9DCC4bnfNT53FAlIaUUpRoFU1VAWgWR0Cil3CzTnaGdX2UKGgGaAloD0MIRDaQLrYxbkCUhpRSlGgVTRgBaBZHQKKYSXdCVr11fZQoaAZoCWgPQwh5dvnWh2htQJSGlFKUaBVNIgFoFkdAoppinJkoW3V9lChoBmgJaA9DCMv0S8SbH3FAlIaUUpRoFU1QAmgWR0CinYCVKPGRdX2UKGgGaAloD0MIuHh4z8EncUCUhpRSlGgVTSoBaBZHQKKgAO7QLNR1fZQoaAZoCWgPQwiwyK8f4j5yQJSGlFKUaBVNMgFoFkdAoqE/Nu+AVnV9lChoBmgJaA9DCP1NKETA9GJAlIaUUpRoFU3oA2gWR0CipZRW912adX2UKGgGaAloD0MIEALyJRSmckCUhpRSlGgVTUYBaBZHQKKmk2b5M111fZQoaAZoCWgPQwgs8BXduvdyQJSGlFKUaBVNOAFoFkdAoqeIJNTLn3V9lChoBmgJaA9DCMWOxqF+Nm5AlIaUUpRoFU2OAWgWR0CiqX7ah6BzdX2UKGgGaAloD0MI9wSJ7a5jckCUhpRSlGgVTTgBaBZHQKKqlZmI0qJ1fZQoaAZoCWgPQwgIISBfQn9JQJSGlFKUaBVL4mgWR0CiqzXgccU/dX2UKGgGaAloD0MIzaylgPRfcUCUhpRSlGgVTVcBaBZHQKKtBoIOYpl1fZQoaAZoCWgPQwiyD7Is2ABwQJSGlFKUaBVNDAFoFkdAoq3pwCKaX3V9lChoBmgJaA9DCAdEiCtn83FAlIaUUpRoFU0cAWgWR0Cirshl18sudX2UKGgGaAloD0MIm49rQ4XKcECUhpRSlGgVTTwBaBZHQKKwbWAf+0h1fZQoaAZoCWgPQwjdRC3NLSNkQJSGlFKUaBVN6ANoFkdAorRUaqCHynV9lChoBmgJaA9DCC8wKxTpdFBAlIaUUpRoFUvPaBZHQKK16Lsrupl1fZQoaAZoCWgPQwhIp658lp9QQJSGlFKUaBVLy2gWR0CitryFXaJzdX2UKGgGaAloD0MIL204LA3IO0CUhpRSlGgVS+RoFkdAorelw97ngnV9lChoBmgJaA9DCHkFoidluE9AlIaUUpRoFUvvaBZHQKK4p9bX6Ip1fZQoaAZoCWgPQwis/gjDAElhQJSGlFKUaBVN6ANoFkdAor9ofMfRu3V9lChoBmgJaA9DCCRCI9g4kWRAlIaUUpRoFU3oA2gWR0CixFE1EVnFdX2UKGgGaAloD0MIHjNQGX+QYECUhpRSlGgVTegDaBZHQKLJGQNkOI91fZQoaAZoCWgPQwjAzeLFQl1wQJSGlFKUaBVNXAFoFkdAosrQCnxaxHV9lChoBmgJaA9DCIaOHVTiwiTAlIaUUpRoFUutaBZHQKLLVfoicG11fZQoaAZoCWgPQwi/DwcJ0fdsQJSGlFKUaBVNTANoFkdAos9Sb8WKuXV9lChoBmgJaA9DCAaeew+XTmFAlIaUUpRoFU3oA2gWR0Ci1PmJ3xFzdX2UKGgGaAloD0MIwylz843pYkCUhpRSlGgVTegDaBZHQKLa/NY8uBd1fZQoaAZoCWgPQwjK/nkasKFhQJSGlFKUaBVN6ANoFkdAot9HuiN83XV9lChoBmgJaA9DCAHChxKtMGxAlIaUUpRoFU2mA2gWR0Ci4sT3qRlpdX2UKGgGaAloD0MIru/DQUK5bUCUhpRSlGgVTSwBaBZHQKLkbGipNsZ1fZQoaAZoCWgPQwiy9KELalZiQJSGlFKUaBVN6ANoFkdAounpuuRs/XV9lChoBmgJaA9DCN9t3jjp1HBAlIaUUpRoFU3EA2gWR0Ci7+xsMy8BdX2UKGgGaAloD0MIsaVHUz1Ab0CUhpRSlGgVTVUBaBZHQKLxYq/dqL11fZQoaAZoCWgPQwjCS3DqwzRyQJSGlFKUaBVNVAJoFkdAovWX+IdlunVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo_model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf065d4b54bb6ef8e4d7426fba89dbe9e79e5f66d4d31c74df428f6f15eaba2c
|
3 |
+
size 146734
|
ppo_model/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo_model/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f089bdb64c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f089bdb6550>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f089bdb65e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f089bdb6670>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f089bdb6700>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f089bdb6790>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f089bdb6820>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f089bdb68b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f089bdb6940>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f089bdb69d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f089bdb6a60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f089bdb6af0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f089be2bab0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 1,
|
46 |
+
"num_timesteps": 1000448,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1678138197063909153,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAALWejr69XX48JBtDu8g4hTnuHAe+biNrOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVZxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJc6KqAm2bkCUhpRSlIwBbJRNOAGMAXSUR0CiO+yDRMN+dX2UKGgGaAloD0MILlbUYBpLb0CUhpRSlGgVS/5oFkdAoj1VqgyuZHV9lChoBmgJaA9DCLb3qSo0NW9AlIaUUpRoFU0vAWgWR0CiPkrk8zRAdX2UKGgGaAloD0MI8GlOXmTGOECUhpRSlGgVS/ZoFkdAoj8C1Z1V53V9lChoBmgJaA9DCE35EFSNaW5AlIaUUpRoFU0EAWgWR0CiP9SofjjrdX2UKGgGaAloD0MIgBE0ZpJkYECUhpRSlGgVTegDaBZHQKJFBK9PDYR1fZQoaAZoCWgPQwhZiuQrwYFxQJSGlFKUaBVNJQFoFkdAokdIeeWfLHV9lChoBmgJaA9DCEgzFk2ndnFAlIaUUpRoFU09AWgWR0CiSLxiG34LdX2UKGgGaAloD0MIz8DIy5oUMsCUhpRSlGgVS75oFkdAokmP1QIldHV9lChoBmgJaA9DCI/Ey9M5121AlIaUUpRoFU0dAWgWR0CiSubTc6/7dX2UKGgGaAloD0MIUDblCm9DcUCUhpRSlGgVTR4BaBZHQKJMh7kXDWN1fZQoaAZoCWgPQwjYnINnQu9wQJSGlFKUaBVNTgFoFkdAok2inpB5X3V9lChoBmgJaA9DCLB0PjyLX3JAlIaUUpRoFU17AWgWR0CiTttMfzSUdX2UKGgGaAloD0MIcayL22gFbkCUhpRSlGgVTT0BaBZHQKJQkLDQ7cR1fZQoaAZoCWgPQwig/UgRmYJxQJSGlFKUaBVNNQFoFkdAolGNY8uBc3V9lChoBmgJaA9DCG2Oc5vw1GFAlIaUUpRoFU3oA2gWR0CiVoW+GoJidX2UKGgGaAloD0MIGqIKf4YVTECUhpRSlGgVS9NoFkdAolchIg/1QXV9lChoBmgJaA9DCMYxkj1CxUpAlIaUUpRoFUvcaBZHQKJXx0Dlo111fZQoaAZoCWgPQwjiWYKMgAI3QJSGlFKUaBVL1GgWR0CiWQvKlpGndX2UKGgGaAloD0MIu5195cF0ckCUhpRSlGgVTVYBaBZHQKJaKrVe8f51fZQoaAZoCWgPQwjaVrPOOINwQJSGlFKUaBVNTwFoFkdAolszKifxt3V9lChoBmgJaA9DCPje36C9RjlAlIaUUpRoFUvZaBZHQKJb2XXRPXV1fZQoaAZoCWgPQwi5quy7IlBJQJSGlFKUaBVLzmgWR0CiXR3Cbc46dX2UKGgGaAloD0MIsvLLYAxXcUCUhpRSlGgVTQcBaBZHQKJd6gcLjPx1fZQoaAZoCWgPQwhHAg029RRvQJSGlFKUaBVL/2gWR0CiXq4nWrfcdX2UKGgGaAloD0MI6X5OQX7vZECUhpRSlGgVTegDaBZHQKJkPdLQHA11fZQoaAZoCWgPQwiEnPf/cdJvQJSGlFKUaBVNEgFoFkdAomV9lPJq7HV9lChoBmgJaA9DCPLPDOIDUU5AlIaUUpRoFUvOaBZHQKJncOq//Nt1fZQoaAZoCWgPQwg/HY8ZqKxvQJSGlFKUaBVNQwFoFkdAomikAmzBynV9lChoBmgJaA9DCJGcTNyqcG5AlIaUUpRoFU2FAmgWR0Cia+BInSfEdX2UKGgGaAloD0MIjIF1HD9U7L+UhpRSlGgVS8xoFkdAomx595QgtHV9lChoBmgJaA9DCCUk0jb+mkZAlIaUUpRoFUvGaBZHQKJtDpj+aSd1fZQoaAZoCWgPQwgLmSuDKslwQJSGlFKUaBVNOAFoFkdAom4HQla8pXV9lChoBmgJaA9DCBAk7xzKDklAlIaUUpRoFUvOaBZHQKJun8NQTEl1fZQoaAZoCWgPQwjt153ufKdwQJSGlFKUaBVL+2gWR0CicBREv0yydX2UKGgGaAloD0MIB+v/HOYmcUCUhpRSlGgVTQIBaBZHQKJw1euV5bB1fZQoaAZoCWgPQwgcX3tmyVJwQJSGlFKUaBVNYwJoFkdAonPRZ2ZAp3V9lChoBmgJaA9DCC4B+KdUim9AlIaUUpRoFU0IAWgWR0CidJ2n889wdX2UKGgGaAloD0MIf4RhwNLMcECUhpRSlGgVTUABaBZHQKJ1poJRfnh1fZQoaAZoCWgPQwiGxhNBHPlsQJSGlFKUaBVNAAFoFkdAonZqPKdQPHV9lChoBmgJaA9DCMJQhxVuP0tAlIaUUpRoFUvKaBZHQKJ3sEOAiFF1fZQoaAZoCWgPQwhupGyRNFdxQJSGlFKUaBVNJgFoFkdAoniV+TeO43V9lChoBmgJaA9DCC2Y+KOoXXFAlIaUUpRoFU0OAWgWR0CieW6/h2nsdX2UKGgGaAloD0MI121Q+21ycECUhpRSlGgVTSUBaBZHQKJ6U6shgVp1fZQoaAZoCWgPQwiCx7d3DTpGQJSGlFKUaBVLwGgWR0Cie5TP0I1MdX2UKGgGaAloD0MIxanWwixQcUCUhpRSlGgVTUwBaBZHQKJ8/4cm0E51fZQoaAZoCWgPQwh16V+SikZxQJSGlFKUaBVNQQFoFkdAon5uY0EX+HV9lChoBmgJaA9DCMrgKHk1KXJAlIaUUpRoFU1KAWgWR0CigNr3Cbc5dX2UKGgGaAloD0MI16TbEvmIckCUhpRSlGgVTR4BaBZHQKKCI9wFTvR1fZQoaAZoCWgPQwjScwtdibJuQJSGlFKUaBVNPgFoFkdAooOsJ6Y3N3V9lChoBmgJaA9DCA/SU+QQi0FAlIaUUpRoFUvvaBZHQKKElqlgtvp1fZQoaAZoCWgPQwik4v+OqFVvQJSGlFKUaBVNJAFoFkdAooY4IdELIHV9lChoBmgJaA9DCO6Yuiu7M3FAlIaUUpRoFU0/AWgWR0Cih0FocrAhdX2UKGgGaAloD0MIPL69a9BRcUCUhpRSlGgVTXQBaBZHQKKIZUaya/h1fZQoaAZoCWgPQwgSFD/G3EtCQJSGlFKUaBVL12gWR0CiibBIOH32dX2UKGgGaAloD0MILO+qB0ybckCUhpRSlGgVTVoBaBZHQKKKz/Nqxkd1fZQoaAZoCWgPQwgRxk/jXkNvQJSGlFKUaBVNLwFoFkdAoovSlk6LfnV9lChoBmgJaA9DCAspP6l2KXBAlIaUUpRoFU1zAWgWR0CijaaLfk3kdX2UKGgGaAloD0MItf6WAPz/RUCUhpRSlGgVS9ZoFkdAoo5KP+4smXV9lChoBmgJaA9DCJ58emxL9G1AlIaUUpRoFU0ZAWgWR0CijyFar3j/dX2UKGgGaAloD0MIDkqYaXsZb0CUhpRSlGgVTRkCaBZHQKKRw1w5vLp1fZQoaAZoCWgPQwhREaeTbPNGQJSGlFKUaBVL0GgWR0Cikln6MzdldX2UKGgGaAloD0MIUitM32sBcUCUhpRSlGgVTekCaBZHQKKU033Hq/x1fZQoaAZoCWgPQwgAN4sXy7NxQJSGlFKUaBVNIwFoFkdAopZmH8CPqHV9lChoBmgJaA9DCC4bnfNT53FAlIaUUpRoFU1VAWgWR0Cil3CzTnaGdX2UKGgGaAloD0MIRDaQLrYxbkCUhpRSlGgVTRgBaBZHQKKYSXdCVr11fZQoaAZoCWgPQwh5dvnWh2htQJSGlFKUaBVNIgFoFkdAoppinJkoW3V9lChoBmgJaA9DCMv0S8SbH3FAlIaUUpRoFU1QAmgWR0CinYCVKPGRdX2UKGgGaAloD0MIuHh4z8EncUCUhpRSlGgVTSoBaBZHQKKgAO7QLNR1fZQoaAZoCWgPQwiwyK8f4j5yQJSGlFKUaBVNMgFoFkdAoqE/Nu+AVnV9lChoBmgJaA9DCP1NKETA9GJAlIaUUpRoFU3oA2gWR0CipZRW912adX2UKGgGaAloD0MIEALyJRSmckCUhpRSlGgVTUYBaBZHQKKmk2b5M111fZQoaAZoCWgPQwgs8BXduvdyQJSGlFKUaBVNOAFoFkdAoqeIJNTLn3V9lChoBmgJaA9DCMWOxqF+Nm5AlIaUUpRoFU2OAWgWR0CiqX7ah6BzdX2UKGgGaAloD0MI9wSJ7a5jckCUhpRSlGgVTTgBaBZHQKKqlZmI0qJ1fZQoaAZoCWgPQwgIISBfQn9JQJSGlFKUaBVL4mgWR0CiqzXgccU/dX2UKGgGaAloD0MIzaylgPRfcUCUhpRSlGgVTVcBaBZHQKKtBoIOYpl1fZQoaAZoCWgPQwiyD7Is2ABwQJSGlFKUaBVNDAFoFkdAoq3pwCKaX3V9lChoBmgJaA9DCAdEiCtn83FAlIaUUpRoFU0cAWgWR0Cirshl18sudX2UKGgGaAloD0MIm49rQ4XKcECUhpRSlGgVTTwBaBZHQKKwbWAf+0h1fZQoaAZoCWgPQwjdRC3NLSNkQJSGlFKUaBVN6ANoFkdAorRUaqCHynV9lChoBmgJaA9DCC8wKxTpdFBAlIaUUpRoFUvPaBZHQKK16Lsrupl1fZQoaAZoCWgPQwhIp658lp9QQJSGlFKUaBVLy2gWR0CitryFXaJzdX2UKGgGaAloD0MIL204LA3IO0CUhpRSlGgVS+RoFkdAorelw97ngnV9lChoBmgJaA9DCHkFoidluE9AlIaUUpRoFUvvaBZHQKK4p9bX6Ip1fZQoaAZoCWgPQwis/gjDAElhQJSGlFKUaBVN6ANoFkdAor9ofMfRu3V9lChoBmgJaA9DCCRCI9g4kWRAlIaUUpRoFU3oA2gWR0CixFE1EVnFdX2UKGgGaAloD0MIHjNQGX+QYECUhpRSlGgVTegDaBZHQKLJGQNkOI91fZQoaAZoCWgPQwjAzeLFQl1wQJSGlFKUaBVNXAFoFkdAosrQCnxaxHV9lChoBmgJaA9DCIaOHVTiwiTAlIaUUpRoFUutaBZHQKLLVfoicG11fZQoaAZoCWgPQwi/DwcJ0fdsQJSGlFKUaBVNTANoFkdAos9Sb8WKuXV9lChoBmgJaA9DCAaeew+XTmFAlIaUUpRoFU3oA2gWR0Ci1PmJ3xFzdX2UKGgGaAloD0MIwylz843pYkCUhpRSlGgVTegDaBZHQKLa/NY8uBd1fZQoaAZoCWgPQwjK/nkasKFhQJSGlFKUaBVN6ANoFkdAot9HuiN83XV9lChoBmgJaA9DCAHChxKtMGxAlIaUUpRoFU2mA2gWR0Ci4sT3qRlpdX2UKGgGaAloD0MIru/DQUK5bUCUhpRSlGgVTSwBaBZHQKLkbGipNsZ1fZQoaAZoCWgPQwiy9KELalZiQJSGlFKUaBVN6ANoFkdAounpuuRs/XV9lChoBmgJaA9DCN9t3jjp1HBAlIaUUpRoFU3EA2gWR0Ci7+xsMy8BdX2UKGgGaAloD0MIsaVHUz1Ab0CUhpRSlGgVTVUBaBZHQKLxYq/dqL11fZQoaAZoCWgPQwjCS3DqwzRyQJSGlFKUaBVNVAJoFkdAovWX+IdlunVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 3908,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo_model/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc8d382f97b372936b2564b714f70d8cdbd12baadad89a1a9363318ea64741e7
|
3 |
+
size 87929
|
ppo_model/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b0582f7e32d1d887a02a0b5c9c3b121f9f7b52c852848988aca14af65f18c36
|
3 |
+
size 43393
|
ppo_model/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_model/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (223 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 214.6335941462455, "std_reward": 86.52182986457716, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-06T22:11:35.509910"}
|