File size: 1,797 Bytes
e074167
760c769
 
e074167
 
 
 
 
 
760c769
 
 
 
e074167
d70c229
e074167
e38130f
 
54fc4b7
 
e074167
 
 
 
 
 
 
 
 
e38130f
 
e074167
 
 
 
 
e38130f
 
 
 
e074167
 
 
 
88a895b
e38130f
6d50277
 
e074167
88a895b
 
 
 
 
e074167
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
language: en
license: cc-by-4.0
tags:
- roberta
- roberta-base
- question-answering
- qa
- movies
datasets:
- imdb
- cornell_movie_dialogue
- MIT Movie
---
# roberta-base + DAPT + Task Transfer for Domain-Specific QA

Objective:
  This is Roberta Base with Domain Adaptive Pretraining on Movie Corpora --> Then trained for the NER task using MIT Movie Dataset --> Then a changed head to do the SQuAD Task. This makes a QA model capable of answering questions in the movie domain, with additional information coming from a different task (NER - Task Transfer).  
  https://huggingface.co./thatdramebaazguy/movie-roberta-base was used as the MovieRoberta.
  
```
model_name = "thatdramebaazguy/movie-roberta-MITmovie-squad"
pipeline(model=model_name, tokenizer=model_name, revision="v1.0", task="question-answering")
```

## Overview
**Language model:** roberta-base  
**Language:** English  
**Downstream-task:** NER --> QA  
**Training data:** imdb, polarity movie data, cornell_movie_dialogue, 25mlens movie names, MIT Movie, SQuADv1  
**Eval data:** MoviesQA (From https://github.com/ibm-aur-nlp/domain-specific-QA)  
**Infrastructure**: 4x Tesla v100   
**Code:**  See [example](https://github.com/adityaarunsinghal/Domain-Adaptation/blob/master/scripts/shell_scripts/movieR_NER_squad.sh)    

## Hyperparameters
```
Num examples = 88567  
Num Epochs = 3  
Instantaneous batch size per device = 32  
Total train batch size (w. parallel, distributed & accumulation) = 128  

``` 
## Performance

### Eval on SQuADv1
- eval_samples =   10790  
- exact_match  = 83.0274  
- f1           = 90.1615  

### Eval on MoviesQA
- eval_samples =    5032
- exact_match = 51.64944
- f1 = 65.53983

Github Repo: 
- [Domain-Adaptation Project](https://github.com/adityaarunsinghal/Domain-Adaptation/)

---