--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: resnet-50-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.5026722090261283 --- # resnet-50-finetuned-eurosat This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co./microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5983 - Accuracy: 0.5027 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.89 | 6 | 1.7745 | 0.2838 | | 1.9066 | 1.89 | 12 | 1.7447 | 0.3895 | | 1.9066 | 2.89 | 18 | 1.7216 | 0.4154 | | 1.9875 | 3.89 | 24 | 1.6914 | 0.4311 | | 1.8094 | 4.89 | 30 | 1.6659 | 0.4629 | | 1.8094 | 5.89 | 36 | 1.6485 | 0.4852 | | 1.8906 | 6.89 | 42 | 1.6278 | 0.4869 | | 1.8906 | 7.89 | 48 | 1.6098 | 0.5021 | | 1.8516 | 8.89 | 54 | 1.6131 | 0.5175 | | 1.718 | 9.89 | 60 | 1.5983 | 0.5027 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1