--- library_name: peft license: llama3.1 base_model: unsloth/Meta-Llama-3.1-8B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 00a4666d-12ae-4972-9753-306a02cf9512 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Meta-Llama-3.1-8B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4ea7d2d1bce2cfcf_train_data.json ds_type: json format: custom path: /workspace/input_data/4ea7d2d1bce2cfcf_train_data.json type: field_input: doc_name field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thalllsssss/00a4666d-12ae-4972-9753-306a02cf9512 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/4ea7d2d1bce2cfcf_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c7bea8f5-220f-4253-8901-ac848f2eaae6 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c7bea8f5-220f-4253-8901-ac848f2eaae6 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ```

# 00a4666d-12ae-4972-9753-306a02cf9512 This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./unsloth/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1511 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 110 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3203 | 0.9954 | 109 | 1.1582 | | 1.7727 | 1.0046 | 110 | 1.1511 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1