wq2012 commited on
Commit
09597a3
·
verified ·
1 Parent(s): 0bbf2b2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -3
README.md CHANGED
@@ -1,3 +1,57 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # Conformer based multilingual speaker encoder
6
+
7
+ ## Summary
8
+
9
+ This is a massively multilingual conformer-based speaker recognition model.
10
+
11
+ The model was trained with public data only.
12
+
13
+ The paper: https://arxiv.org/abs/2104.02125
14
+
15
+ ```
16
+ @inproceedings{chojnacka2021speakerstew,
17
+ title={{SpeakerStew: Scaling to many languages with a triaged multilingual text-dependent and text-independent speaker verification system}},
18
+ author={Chojnacka, Roza and Pelecanos, Jason and Wang, Quan and Moreno, Ignacio Lopez},
19
+ booktitle={Prod. Interspeech},
20
+ year={2021}
21
+ }
22
+ ```
23
+
24
+ ## Usage
25
+
26
+ Run use this model, you will need to use the `siglingvo` library: https://github.com/google/speaker-id/tree/master/lingvo
27
+
28
+ Since lingvo does not support Python 3.11 yet, make sure your Python is up to 3.10.
29
+
30
+ Install the library:
31
+
32
+ ```
33
+ pip install sidlingvo
34
+ ```
35
+
36
+ Example usage:
37
+
38
+ ```Python
39
+ import os
40
+ from sidlingvo import wav_to_dvector
41
+ from huggingface_hub import hf_hub_download
42
+
43
+ repo_id = "tflite-hub/conformer-speaker-encoder"
44
+ model_path = "models"
45
+ hf_hub_download(repo_id=repo_id, filename="vad_long_model.tflite", local_dir=model_path)
46
+ hf_hub_download(repo_id=repo_id, filename="vad_long_mean_stddev.csv", local_dir=model_path)
47
+ hf_hub_download(repo_id=repo_id, filename="conformer_tisid_medium..tflite", local_dir=model_path)
48
+
49
+ enroll_wav_files = ["your_first_wav_file.wav"]
50
+ test_wav_file = "your_second_wav_file.wav"
51
+ runner = wav_to_dvector.WavToDvectorRunner(
52
+ vad_model_file=os.path.join(model_path, "vad_long_model.tflite"),
53
+ vad_mean_stddev_file=os.path.join(model_path, "vad_long_mean_stddev.csv"),
54
+ tisid_model_file=os.path.join(model_path, "conformer_tisid_medium.tflite"))
55
+ score = runner.compute_score(enroll_wav_files, test_wav_file)
56
+ print("Speaker similarity score:", score)
57
+ ```