File size: 9,795 Bytes
b3c7334
 
7f33f11
b3c7334
 
 
 
 
49ccc46
7294931
b3c7334
 
 
 
 
 
 
 
 
2f4f8a0
 
 
 
 
b3c7334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1901b2
48fd06a
675cc53
4b52ee0
3f9ff0f
6cb50f2
f74b67e
34bf76e
77e7f8b
2105aad
01d43ac
603009a
744cb50
7a86300
af35a85
1b7c825
74fee1c
94a9af0
ebfd991
5890881
a4d32ba
6df0505
4c98092
84eee69
75e0bc1
0e6cbb5
7198320
e6cad8d
9725733
8bd2f4c
4892395
2eaa83c
6f9a732
42a79ed
ac86b86
248a83d
dcdc15d
51fe1ac
7807248
08beec4
fd97734
521471c
5917e90
a093dcb
8922015
b6b35d1
8392ff9
dcadb9b
099e504
c0f2f61
139bffa
0a0f2c3
6ce16f4
ff12248
6d99df6
d9f60f7
77e7df6
1eb120b
709f3b5
c849a68
ed2211c
2936d78
8564faa
499df12
0c7bfd9
0f7cb04
a162d36
32fde1b
945060e
d126408
c50235f
b51593b
e33c700
9f505d5
46711ee
10cb2bb
47a9ea0
3e71629
632d89b
049a167
239a0d7
003f898
7b8e9cd
3c24276
fd4ec05
7029d82
a986b17
4e72e85
859ca99
28af85a
72c85e8
ff02285
9c4b75c
a2fd40e
552931b
2af183f
1ee6d88
78a42ee
2f4f8a0
b3c7334
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---
license: mit
mask_token: "[MASK]"
tags:
- generated_from_keras_callback
model-index:
- name: tf-tpu/roberta-base-epochs-100
  results: []
widget:
- text: Goal of my life is to [MASK].
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# tf-tpu/roberta-base-epochs-100

This model is a fine-tuned version of [roberta-base](https://huggingface.co./roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.0414
- Train Accuracy: 0.1136
- Validation Loss: 1.0103
- Validation Accuracy: 0.1144
- Epoch: 99

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 0.0001, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 55765, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 2935, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001}
- training_precision: mixed_bfloat16

### Training results

| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 7.2121     | 0.0274         | 5.7188          | 0.0346              | 0     |
| 5.4335     | 0.0414         | 5.2266          | 0.0439              | 1     |
| 5.1579     | 0.0445         | 5.0625          | 0.0441              | 2     |
| 5.0231     | 0.0447         | 4.9453          | 0.0446              | 3     |
| 4.9323     | 0.0448         | 4.8633          | 0.0443              | 4     |
| 4.8672     | 0.0449         | 4.8789          | 0.0440              | 5     |
| 4.8200     | 0.0449         | 4.8164          | 0.0441              | 6     |
| 4.7841     | 0.0449         | 4.7734          | 0.0450              | 7     |
| 4.7546     | 0.0449         | 4.7539          | 0.0441              | 8     |
| 4.7288     | 0.0449         | 4.7305          | 0.0447              | 9     |
| 4.7084     | 0.0449         | 4.7422          | 0.0443              | 10    |
| 4.6884     | 0.0450         | 4.7148          | 0.0437              | 11    |
| 4.6764     | 0.0449         | 4.7070          | 0.0441              | 12    |
| 4.6637     | 0.0449         | 4.7227          | 0.0435              | 13    |
| 4.5963     | 0.0449         | 4.5195          | 0.0444              | 14    |
| 4.3462     | 0.0468         | 4.0742          | 0.0515              | 15    |
| 3.4139     | 0.0650         | 2.6348          | 0.0797              | 16    |
| 2.5336     | 0.0817         | 2.1816          | 0.0888              | 17    |
| 2.1859     | 0.0888         | 1.9648          | 0.0930              | 18    |
| 2.0043     | 0.0925         | 1.8154          | 0.0961              | 19    |
| 1.8887     | 0.0948         | 1.7129          | 0.0993              | 20    |
| 1.8058     | 0.0965         | 1.6729          | 0.0996              | 21    |
| 1.7402     | 0.0979         | 1.6191          | 0.1010              | 22    |
| 1.6861     | 0.0990         | 1.5693          | 0.1024              | 23    |
| 1.6327     | 0.1001         | 1.5273          | 0.1035              | 24    |
| 1.5906     | 0.1010         | 1.4766          | 0.1042              | 25    |
| 1.5545     | 0.1018         | 1.4561          | 0.1031              | 26    |
| 1.5231     | 0.1024         | 1.4365          | 0.1054              | 27    |
| 1.4957     | 0.1030         | 1.3975          | 0.1046              | 28    |
| 1.4700     | 0.1036         | 1.3789          | 0.1061              | 29    |
| 1.4466     | 0.1041         | 1.3262          | 0.1070              | 30    |
| 1.4253     | 0.1046         | 1.3223          | 0.1072              | 31    |
| 1.4059     | 0.1050         | 1.3096          | 0.1070              | 32    |
| 1.3873     | 0.1054         | 1.3164          | 0.1072              | 33    |
| 1.3703     | 0.1058         | 1.2861          | 0.1072              | 34    |
| 1.3550     | 0.1062         | 1.2705          | 0.1082              | 35    |
| 1.3398     | 0.1065         | 1.2578          | 0.1082              | 36    |
| 1.3260     | 0.1068         | 1.25            | 0.1096              | 37    |
| 1.3127     | 0.1071         | 1.2266          | 0.1102              | 38    |
| 1.2996     | 0.1074         | 1.2305          | 0.1098              | 39    |
| 1.2891     | 0.1077         | 1.2139          | 0.1088              | 40    |
| 1.2783     | 0.1079         | 1.2158          | 0.1093              | 41    |
| 1.2674     | 0.1081         | 1.1787          | 0.1114              | 42    |
| 1.2570     | 0.1084         | 1.1709          | 0.1107              | 43    |
| 1.2478     | 0.1086         | 1.1709          | 0.1104              | 44    |
| 1.2390     | 0.1088         | 1.1777          | 0.1101              | 45    |
| 1.2305     | 0.1090         | 1.1738          | 0.1111              | 46    |
| 1.2215     | 0.1092         | 1.1533          | 0.1112              | 47    |
| 1.2140     | 0.1094         | 1.1514          | 0.1117              | 48    |
| 1.2068     | 0.1096         | 1.1621          | 0.1119              | 49    |
| 1.1991     | 0.1097         | 1.1416          | 0.1108              | 50    |
| 1.1927     | 0.1099         | 1.1279          | 0.1113              | 51    |
| 1.1854     | 0.1101         | 1.1147          | 0.1123              | 52    |
| 1.1800     | 0.1102         | 1.125           | 0.1116              | 53    |
| 1.1727     | 0.1104         | 1.1167          | 0.1116              | 54    |
| 1.1679     | 0.1105         | 1.0884          | 0.1122              | 55    |
| 1.1613     | 0.1106         | 1.1084          | 0.1120              | 56    |
| 1.1563     | 0.1107         | 1.1035          | 0.1119              | 57    |
| 1.1517     | 0.1109         | 1.1035          | 0.1124              | 58    |
| 1.1454     | 0.1111         | 1.0718          | 0.1128              | 59    |
| 1.1403     | 0.1111         | 1.0874          | 0.1123              | 60    |
| 1.1360     | 0.1112         | 1.0742          | 0.1145              | 61    |
| 1.1318     | 0.1114         | 1.0811          | 0.1131              | 62    |
| 1.1277     | 0.1114         | 1.0723          | 0.1129              | 63    |
| 1.1226     | 0.1116         | 1.0640          | 0.1124              | 64    |
| 1.1186     | 0.1117         | 1.0840          | 0.1117              | 65    |
| 1.1144     | 0.1118         | 1.0522          | 0.1139              | 66    |
| 1.1111     | 0.1119         | 1.0557          | 0.1132              | 67    |
| 1.1069     | 0.1119         | 1.0718          | 0.1124              | 68    |
| 1.1038     | 0.1120         | 1.0376          | 0.1135              | 69    |
| 1.1007     | 0.1121         | 1.0537          | 0.1138              | 70    |
| 1.0975     | 0.1121         | 1.0503          | 0.1134              | 71    |
| 1.0941     | 0.1122         | 1.0317          | 0.1140              | 72    |
| 1.0902     | 0.1124         | 1.0439          | 0.1145              | 73    |
| 1.0881     | 0.1124         | 1.0352          | 0.1145              | 74    |
| 1.0839     | 0.1125         | 1.0449          | 0.1144              | 75    |
| 1.0821     | 0.1125         | 1.0229          | 0.1148              | 76    |
| 1.0791     | 0.1126         | 1.0244          | 0.1148              | 77    |
| 1.0764     | 0.1127         | 1.0366          | 0.1141              | 78    |
| 1.0741     | 0.1128         | 1.0308          | 0.1134              | 79    |
| 1.0716     | 0.1128         | 1.0400          | 0.1137              | 80    |
| 1.0688     | 0.1129         | 1.0225          | 0.1140              | 81    |
| 1.0664     | 0.1129         | 1.0269          | 0.1139              | 82    |
| 1.0643     | 0.1129         | 1.0156          | 0.1146              | 83    |
| 1.0629     | 0.1131         | 1.0127          | 0.1149              | 84    |
| 1.0602     | 0.1131         | 1.0420          | 0.1132              | 85    |
| 1.0580     | 0.1132         | 1.0205          | 0.1149              | 86    |
| 1.0568     | 0.1132         | 1.0024          | 0.1159              | 87    |
| 1.0547     | 0.1132         | 1.0210          | 0.1144              | 88    |
| 1.0536     | 0.1133         | 1.0176          | 0.1143              | 89    |
| 1.0522     | 0.1133         | 0.9951          | 0.1134              | 90    |
| 1.0505     | 0.1134         | 1.0283          | 0.1136              | 91    |
| 1.0484     | 0.1134         | 1.0063          | 0.1141              | 92    |
| 1.0482     | 0.1134         | 0.9917          | 0.1141              | 93    |
| 1.0463     | 0.1135         | 1.0244          | 0.1145              | 94    |
| 1.0458     | 0.1134         | 1.0220          | 0.1143              | 95    |
| 1.0448     | 0.1135         | 0.9785          | 0.1147              | 96    |
| 1.0435     | 0.1135         | 0.9771          | 0.1155              | 97    |
| 1.0433     | 0.1135         | 0.9946          | 0.1137              | 98    |
| 1.0414     | 0.1136         | 1.0103          | 0.1144              | 99    |


### Framework versions

- Transformers 4.27.0.dev0
- TensorFlow 2.9.1
- Tokenizers 0.13.2