File size: 4,048 Bytes
b3c7334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6cad8d
 
 
 
 
b3c7334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1901b2
48fd06a
675cc53
4b52ee0
3f9ff0f
6cb50f2
f74b67e
34bf76e
77e7f8b
2105aad
01d43ac
603009a
744cb50
7a86300
af35a85
1b7c825
74fee1c
94a9af0
ebfd991
5890881
a4d32ba
6df0505
4c98092
84eee69
75e0bc1
0e6cbb5
7198320
e6cad8d
b3c7334
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: tf-tpu/roberta-base-epochs-100
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# tf-tpu/roberta-base-epochs-100

This model is a fine-tuned version of [roberta-base](https://huggingface.co./roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.4957
- Train Accuracy: 0.1030
- Validation Loss: 1.3975
- Validation Accuracy: 0.1046
- Epoch: 28

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 0.0001, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 55765, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 2935, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001}
- training_precision: mixed_bfloat16

### Training results

| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 7.2121     | 0.0274         | 5.7188          | 0.0346              | 0     |
| 5.4335     | 0.0414         | 5.2266          | 0.0439              | 1     |
| 5.1579     | 0.0445         | 5.0625          | 0.0441              | 2     |
| 5.0231     | 0.0447         | 4.9453          | 0.0446              | 3     |
| 4.9323     | 0.0448         | 4.8633          | 0.0443              | 4     |
| 4.8672     | 0.0449         | 4.8789          | 0.0440              | 5     |
| 4.8200     | 0.0449         | 4.8164          | 0.0441              | 6     |
| 4.7841     | 0.0449         | 4.7734          | 0.0450              | 7     |
| 4.7546     | 0.0449         | 4.7539          | 0.0441              | 8     |
| 4.7288     | 0.0449         | 4.7305          | 0.0447              | 9     |
| 4.7084     | 0.0449         | 4.7422          | 0.0443              | 10    |
| 4.6884     | 0.0450         | 4.7148          | 0.0437              | 11    |
| 4.6764     | 0.0449         | 4.7070          | 0.0441              | 12    |
| 4.6637     | 0.0449         | 4.7227          | 0.0435              | 13    |
| 4.5963     | 0.0449         | 4.5195          | 0.0444              | 14    |
| 4.3462     | 0.0468         | 4.0742          | 0.0515              | 15    |
| 3.4139     | 0.0650         | 2.6348          | 0.0797              | 16    |
| 2.5336     | 0.0817         | 2.1816          | 0.0888              | 17    |
| 2.1859     | 0.0888         | 1.9648          | 0.0930              | 18    |
| 2.0043     | 0.0925         | 1.8154          | 0.0961              | 19    |
| 1.8887     | 0.0948         | 1.7129          | 0.0993              | 20    |
| 1.8058     | 0.0965         | 1.6729          | 0.0996              | 21    |
| 1.7402     | 0.0979         | 1.6191          | 0.1010              | 22    |
| 1.6861     | 0.0990         | 1.5693          | 0.1024              | 23    |
| 1.6327     | 0.1001         | 1.5273          | 0.1035              | 24    |
| 1.5906     | 0.1010         | 1.4766          | 0.1042              | 25    |
| 1.5545     | 0.1018         | 1.4561          | 0.1031              | 26    |
| 1.5231     | 0.1024         | 1.4365          | 0.1054              | 27    |
| 1.4957     | 0.1030         | 1.3975          | 0.1046              | 28    |


### Framework versions

- Transformers 4.27.0.dev0
- TensorFlow 2.9.1
- Tokenizers 0.13.2