--- tags: - Named Entity Recognition - Relation Extraction datasets: - text2tech/ner_re_1000_texts_GPT3.5labeled_chat_dataset - text2tech/ner_100abstracts_100full_texts_GPT4labeled_chat_dataset --- # Model Card for Model ID Mistral fine-tuned on 1000 GPT3.5- and 200 GPT4-labeled documents to extract technical entities and relations between entities from texts. ## Model Details ### Model Description - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. from transformers import AutoModelForCausalLM, AutoTokenizer import datasets # load model and tokenizer MODEL = "text2tech/mistral-7b-instruct-v0.2-NER-RE-qlora-1200docs" model = AutoModelForCausalLM.from_pretrained(MODEL, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(MODEL, padding_side="left", pad_token_id=0) # prepare example data data = datasets.load_dataset("text2tech/ner_re_1000_texts_GPT3.5labeled_chat_dataset") ex_user_prompt = [data['test']['NER_chats'][0][0]] ex = tokenizer.apply_chat_template(ex_user_prompt, add_generation_prompt=True, return_dict=True, return_tensors='pt') ex = {k: v.to(model.device) for k, v in ex.items()} print(ex_user_prompt[0]['content']) # generate response response = model.generate(**ex, max_new_tokens=300, temperature=0.0) # print decoded input_len = ex['input_ids'].shape[1] print(tokenizer.decode(response[0][input_len:], skip_special_tokens=True)) [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]