vivek2001123
commited on
Commit
·
74b3178
1
Parent(s):
4981d83
Delete app.py
Browse files
app.py
DELETED
@@ -1,195 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""Inference_LawyerGPT_Finetune_falcon7b_Indian_Law_Data.ipynb
|
3 |
-
|
4 |
-
Automatically generated by Colaboratory.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/1NpBtrGAcXsmoSmM5Sr-INiE5-tU9D37n
|
8 |
-
|
9 |
-
### Install requirements
|
10 |
-
|
11 |
-
First, run the cells below to install the requirements:
|
12 |
-
"""
|
13 |
-
|
14 |
-
!nvidia-smi
|
15 |
-
|
16 |
-
!pip install -Uqqq pip --progress-bar off
|
17 |
-
!pip install -qqq bitsandbytes==0.39.0
|
18 |
-
!pip install -qqq torch--2.0.1 --progress-bar off
|
19 |
-
!pip install -qqq -U git+https://github.com/huggingface/transformers.git@e03a9cc --progress-bar off
|
20 |
-
!pip install -qqq -U git+https://github.com/huggingface/peft.git@42a184f --progress-bar off
|
21 |
-
!pip install -qqq -U git+https://github.com/huggingface/accelerate.git@c9fbb71 --progress-bar off
|
22 |
-
!pip install -qqq datasets==2.12.0 --progress-bar off
|
23 |
-
!pip install -qqq loralib==0.1.1 --progress-bar off
|
24 |
-
!pip install einops
|
25 |
-
|
26 |
-
import os
|
27 |
-
# from pprint import pprint
|
28 |
-
# import json
|
29 |
-
|
30 |
-
import bitsandbytes as bnb
|
31 |
-
import pandas as pd
|
32 |
-
import torch
|
33 |
-
import torch.nn as nn
|
34 |
-
import transformers
|
35 |
-
from datasets import load_dataset
|
36 |
-
from huggingface_hub import notebook_login
|
37 |
-
from peft import (
|
38 |
-
LoraConfig,
|
39 |
-
PeftConfig,
|
40 |
-
get_peft_model,
|
41 |
-
prepare_model_for_kbit_training,
|
42 |
-
)
|
43 |
-
from transformers import (
|
44 |
-
AutoConfig,
|
45 |
-
AutoModelForCausalLM,
|
46 |
-
AutoTokenizer,
|
47 |
-
BitsAndBytesConfig,
|
48 |
-
)
|
49 |
-
|
50 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
51 |
-
|
52 |
-
notebook_login()
|
53 |
-
#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
|
54 |
-
|
55 |
-
"""### Load dataset"""
|
56 |
-
|
57 |
-
from datasets import load_dataset
|
58 |
-
|
59 |
-
dataset_name = "nisaar/Lawyer_GPT_India"
|
60 |
-
#dataset_name = "patrick11434/TEST_LLM_DATASET"
|
61 |
-
dataset = load_dataset(dataset_name, split="train")
|
62 |
-
|
63 |
-
"""## Load adapters from the Hub
|
64 |
-
|
65 |
-
You can also directly load adapters from the Hub using the commands below:
|
66 |
-
"""
|
67 |
-
|
68 |
-
from peft import *
|
69 |
-
|
70 |
-
#change peft_model_id
|
71 |
-
bnb_config = BitsAndBytesConfig(
|
72 |
-
load_in_4bit=True,
|
73 |
-
load_4bit_use_double_quant=True,
|
74 |
-
bnb_4bit_quant_type="nf4",
|
75 |
-
bnb_4bit_compute_dtype=torch.bfloat16,
|
76 |
-
)
|
77 |
-
|
78 |
-
peft_model_id = "nisaar/falcon7b-Indian_Law_150Prompts"
|
79 |
-
config = PeftConfig.from_pretrained(peft_model_id)
|
80 |
-
model = AutoModelForCausalLM.from_pretrained(
|
81 |
-
config.base_model_name_or_path,
|
82 |
-
return_dict=True,
|
83 |
-
quantization_config=bnb_config,
|
84 |
-
device_map="auto",
|
85 |
-
trust_remote_code=True,
|
86 |
-
)
|
87 |
-
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
88 |
-
tokenizer.pad_token = tokenizer.eos_token
|
89 |
-
|
90 |
-
|
91 |
-
model = PeftModel.from_pretrained(model, peft_model_id)
|
92 |
-
|
93 |
-
"""## Inference
|
94 |
-
|
95 |
-
You can then directly use the trained model or the model that you have loaded from the 🤗 Hub for inference as you would do it usually in `transformers`.
|
96 |
-
"""
|
97 |
-
|
98 |
-
generation_config = model.generation_config
|
99 |
-
generation_config.max_new_tokens = 200
|
100 |
-
generation_config_temperature = 1
|
101 |
-
generation_config.top_p = 0.7
|
102 |
-
generation_config.num_return_sequences = 1
|
103 |
-
generation_config.pad_token_id = tokenizer.eos_token_id
|
104 |
-
generation_config_eod_token_id = tokenizer.eos_token_id
|
105 |
-
|
106 |
-
DEVICE = "cuda:0"
|
107 |
-
|
108 |
-
# Commented out IPython magic to ensure Python compatibility.
|
109 |
-
# %%time
|
110 |
-
# prompt = f"""
|
111 |
-
# <human>: Who appoints the Chief Justice of India?
|
112 |
-
# <assistant>:
|
113 |
-
# """.strip()
|
114 |
-
#
|
115 |
-
# encoding = tokenizer(prompt, return_tensors="pt").to(DEVICE)
|
116 |
-
# with torch.inference_mode():
|
117 |
-
# outputs = model.generate(
|
118 |
-
# input_ids=encoding.attention_mask,
|
119 |
-
# generation_config=generation_config,
|
120 |
-
# )
|
121 |
-
# print(tokenizer.decode(outputs[0],skip_special_tokens=True))
|
122 |
-
|
123 |
-
def generate_response(question: str) -> str:
|
124 |
-
prompt = f"""
|
125 |
-
<human>: {question}
|
126 |
-
<assistant>:
|
127 |
-
""".strip()
|
128 |
-
encoding = tokenizer(prompt, return_tensors="pt").to(DEVICE)
|
129 |
-
with torch.inference_mode():
|
130 |
-
outputs = model.generate(
|
131 |
-
input_ids=encoding.input_ids,
|
132 |
-
attention_mask=encoding.attention_mask,
|
133 |
-
generation_config=generation_config,
|
134 |
-
)
|
135 |
-
response = tokenizer.decode(outputs[0],skip_special_tokens=True)
|
136 |
-
|
137 |
-
assistant_start = '<assistant>:'
|
138 |
-
response_start = response.find(assistant_start)
|
139 |
-
return response[response_start + len(assistant_start):].strip()
|
140 |
-
|
141 |
-
prompt = "Debate the merits and demerits of introducing simultaneous elections in India?"
|
142 |
-
print(generate_response(prompt))
|
143 |
-
|
144 |
-
prompt = "What are the duties of the President of India as per the Constitution?"
|
145 |
-
print(generate_response(prompt))
|
146 |
-
|
147 |
-
prompt = "Write a legal memo on the issue of manual scavenging in light of The Prohibition of Employment as Manual Scavengers and their Rehabilitation Act, 2013."
|
148 |
-
print(generate_response(prompt))
|
149 |
-
|
150 |
-
prompt
|
151 |
-
|
152 |
-
prompt = "Explain the concept of 'Separation of Powers' in the Indian Constitution"
|
153 |
-
print(generate_response(prompt))
|
154 |
-
|
155 |
-
prompt = "Can you explain the steps for registration of a trademark in India?"
|
156 |
-
print(generate_response(prompt))
|
157 |
-
|
158 |
-
prompt = "What are the potential implications of the proposed Personal Data Protection Bill on tech companies in India?"
|
159 |
-
print(generate_response(prompt))
|
160 |
-
|
161 |
-
prompt = "Can you draft a non-disclosure agreement (NDA) under Indian law?"
|
162 |
-
print(generate_response(prompt))
|
163 |
-
|
164 |
-
prompt = "Can you summarize the main points of Article 21 of the Indian Constitution?"
|
165 |
-
print(generate_response(prompt))
|
166 |
-
|
167 |
-
prompt = "Can you summarize the main arguments of the Supreme Court of India judgment in Kesavananda Bharati v. State of Kerala?"
|
168 |
-
print(generate_response(prompt))
|
169 |
-
|
170 |
-
prompt = "what is the mysterious case of Advocate Nisaar that was a famous in supreme court of india?"
|
171 |
-
print(generate_response(prompt))
|
172 |
-
|
173 |
-
prompt = "what is the mysterious case of Advocate Nisaar that was a famous in supreme court of india?"
|
174 |
-
print(generate_response(prompt))
|
175 |
-
|
176 |
-
prompt = "Can you draft a confidentiality clause for a contract under Indian law?"
|
177 |
-
print(generate_response(prompt))
|
178 |
-
|
179 |
-
prompt = "How is the concept of 'Economic Justice' enshrined in the Preamble of the Indian Constitution??"
|
180 |
-
print(generate_response(prompt))
|
181 |
-
|
182 |
-
prompt = "What is the role of the 'Supreme Court' in preserving the fundamental rights of citizens in India?"
|
183 |
-
print(generate_response(prompt))
|
184 |
-
|
185 |
-
prompt = "Analyze the potential impact of 'Online Education Rights' for students in India?"
|
186 |
-
print(generate_response(prompt))
|
187 |
-
|
188 |
-
prompt = "Analyze the potential impact of 'Online Education Rights' for students in India?"
|
189 |
-
print(generate_response(prompt))
|
190 |
-
|
191 |
-
prompt = "Discuss the potential effects of a 'Universal Basic Income' policy in India"
|
192 |
-
print(generate_response(prompt))
|
193 |
-
|
194 |
-
prompt = "Analyze the potential impact of 'Online Education Rights' for students in India?"
|
195 |
-
print(generate_response(prompt))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|