Text Generation
Transformers
English
Inference Endpoints
vivek2001123 commited on
Commit
74b3178
·
1 Parent(s): 4981d83

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -195
app.py DELETED
@@ -1,195 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """Inference_LawyerGPT_Finetune_falcon7b_Indian_Law_Data.ipynb
3
-
4
- Automatically generated by Colaboratory.
5
-
6
- Original file is located at
7
- https://colab.research.google.com/drive/1NpBtrGAcXsmoSmM5Sr-INiE5-tU9D37n
8
-
9
- ### Install requirements
10
-
11
- First, run the cells below to install the requirements:
12
- """
13
-
14
- !nvidia-smi
15
-
16
- !pip install -Uqqq pip --progress-bar off
17
- !pip install -qqq bitsandbytes==0.39.0
18
- !pip install -qqq torch--2.0.1 --progress-bar off
19
- !pip install -qqq -U git+https://github.com/huggingface/transformers.git@e03a9cc --progress-bar off
20
- !pip install -qqq -U git+https://github.com/huggingface/peft.git@42a184f --progress-bar off
21
- !pip install -qqq -U git+https://github.com/huggingface/accelerate.git@c9fbb71 --progress-bar off
22
- !pip install -qqq datasets==2.12.0 --progress-bar off
23
- !pip install -qqq loralib==0.1.1 --progress-bar off
24
- !pip install einops
25
-
26
- import os
27
- # from pprint import pprint
28
- # import json
29
-
30
- import bitsandbytes as bnb
31
- import pandas as pd
32
- import torch
33
- import torch.nn as nn
34
- import transformers
35
- from datasets import load_dataset
36
- from huggingface_hub import notebook_login
37
- from peft import (
38
- LoraConfig,
39
- PeftConfig,
40
- get_peft_model,
41
- prepare_model_for_kbit_training,
42
- )
43
- from transformers import (
44
- AutoConfig,
45
- AutoModelForCausalLM,
46
- AutoTokenizer,
47
- BitsAndBytesConfig,
48
- )
49
-
50
- os.environ["CUDA_VISIBLE_DEVICES"] = "0"
51
-
52
- notebook_login()
53
- #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
54
-
55
- """### Load dataset"""
56
-
57
- from datasets import load_dataset
58
-
59
- dataset_name = "nisaar/Lawyer_GPT_India"
60
- #dataset_name = "patrick11434/TEST_LLM_DATASET"
61
- dataset = load_dataset(dataset_name, split="train")
62
-
63
- """## Load adapters from the Hub
64
-
65
- You can also directly load adapters from the Hub using the commands below:
66
- """
67
-
68
- from peft import *
69
-
70
- #change peft_model_id
71
- bnb_config = BitsAndBytesConfig(
72
- load_in_4bit=True,
73
- load_4bit_use_double_quant=True,
74
- bnb_4bit_quant_type="nf4",
75
- bnb_4bit_compute_dtype=torch.bfloat16,
76
- )
77
-
78
- peft_model_id = "nisaar/falcon7b-Indian_Law_150Prompts"
79
- config = PeftConfig.from_pretrained(peft_model_id)
80
- model = AutoModelForCausalLM.from_pretrained(
81
- config.base_model_name_or_path,
82
- return_dict=True,
83
- quantization_config=bnb_config,
84
- device_map="auto",
85
- trust_remote_code=True,
86
- )
87
- tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
88
- tokenizer.pad_token = tokenizer.eos_token
89
-
90
-
91
- model = PeftModel.from_pretrained(model, peft_model_id)
92
-
93
- """## Inference
94
-
95
- You can then directly use the trained model or the model that you have loaded from the 🤗 Hub for inference as you would do it usually in `transformers`.
96
- """
97
-
98
- generation_config = model.generation_config
99
- generation_config.max_new_tokens = 200
100
- generation_config_temperature = 1
101
- generation_config.top_p = 0.7
102
- generation_config.num_return_sequences = 1
103
- generation_config.pad_token_id = tokenizer.eos_token_id
104
- generation_config_eod_token_id = tokenizer.eos_token_id
105
-
106
- DEVICE = "cuda:0"
107
-
108
- # Commented out IPython magic to ensure Python compatibility.
109
- # %%time
110
- # prompt = f"""
111
- # <human>: Who appoints the Chief Justice of India?
112
- # <assistant>:
113
- # """.strip()
114
- #
115
- # encoding = tokenizer(prompt, return_tensors="pt").to(DEVICE)
116
- # with torch.inference_mode():
117
- # outputs = model.generate(
118
- # input_ids=encoding.attention_mask,
119
- # generation_config=generation_config,
120
- # )
121
- # print(tokenizer.decode(outputs[0],skip_special_tokens=True))
122
-
123
- def generate_response(question: str) -> str:
124
- prompt = f"""
125
- <human>: {question}
126
- <assistant>:
127
- """.strip()
128
- encoding = tokenizer(prompt, return_tensors="pt").to(DEVICE)
129
- with torch.inference_mode():
130
- outputs = model.generate(
131
- input_ids=encoding.input_ids,
132
- attention_mask=encoding.attention_mask,
133
- generation_config=generation_config,
134
- )
135
- response = tokenizer.decode(outputs[0],skip_special_tokens=True)
136
-
137
- assistant_start = '<assistant>:'
138
- response_start = response.find(assistant_start)
139
- return response[response_start + len(assistant_start):].strip()
140
-
141
- prompt = "Debate the merits and demerits of introducing simultaneous elections in India?"
142
- print(generate_response(prompt))
143
-
144
- prompt = "What are the duties of the President of India as per the Constitution?"
145
- print(generate_response(prompt))
146
-
147
- prompt = "Write a legal memo on the issue of manual scavenging in light of The Prohibition of Employment as Manual Scavengers and their Rehabilitation Act, 2013."
148
- print(generate_response(prompt))
149
-
150
- prompt
151
-
152
- prompt = "Explain the concept of 'Separation of Powers' in the Indian Constitution"
153
- print(generate_response(prompt))
154
-
155
- prompt = "Can you explain the steps for registration of a trademark in India?"
156
- print(generate_response(prompt))
157
-
158
- prompt = "What are the potential implications of the proposed Personal Data Protection Bill on tech companies in India?"
159
- print(generate_response(prompt))
160
-
161
- prompt = "Can you draft a non-disclosure agreement (NDA) under Indian law?"
162
- print(generate_response(prompt))
163
-
164
- prompt = "Can you summarize the main points of Article 21 of the Indian Constitution?"
165
- print(generate_response(prompt))
166
-
167
- prompt = "Can you summarize the main arguments of the Supreme Court of India judgment in Kesavananda Bharati v. State of Kerala?"
168
- print(generate_response(prompt))
169
-
170
- prompt = "what is the mysterious case of Advocate Nisaar that was a famous in supreme court of india?"
171
- print(generate_response(prompt))
172
-
173
- prompt = "what is the mysterious case of Advocate Nisaar that was a famous in supreme court of india?"
174
- print(generate_response(prompt))
175
-
176
- prompt = "Can you draft a confidentiality clause for a contract under Indian law?"
177
- print(generate_response(prompt))
178
-
179
- prompt = "How is the concept of 'Economic Justice' enshrined in the Preamble of the Indian Constitution??"
180
- print(generate_response(prompt))
181
-
182
- prompt = "What is the role of the 'Supreme Court' in preserving the fundamental rights of citizens in India?"
183
- print(generate_response(prompt))
184
-
185
- prompt = "Analyze the potential impact of 'Online Education Rights' for students in India?"
186
- print(generate_response(prompt))
187
-
188
- prompt = "Analyze the potential impact of 'Online Education Rights' for students in India?"
189
- print(generate_response(prompt))
190
-
191
- prompt = "Discuss the potential effects of a 'Universal Basic Income' policy in India"
192
- print(generate_response(prompt))
193
-
194
- prompt = "Analyze the potential impact of 'Online Education Rights' for students in India?"
195
- print(generate_response(prompt))