terrencewee12
commited on
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,17 +1,18 @@
|
|
|
|
1 |
---
|
2 |
-
datasets:
|
3 |
-
- tyqiangz/multilingual-sentiments
|
4 |
language:
|
5 |
- en
|
6 |
- ms
|
7 |
- zh
|
8 |
-
license: apache-2.0
|
9 |
-
metrics:
|
10 |
-
- accuracy
|
11 |
tags:
|
12 |
- sentiment-analysis
|
13 |
- text-classification
|
14 |
- multilingual
|
|
|
|
|
|
|
|
|
|
|
15 |
model-index:
|
16 |
- name: xlm-roberta-base-sentiment-multilingual-finetuned
|
17 |
results:
|
@@ -19,11 +20,68 @@ model-index:
|
|
19 |
type: text-classification
|
20 |
name: Text Classification
|
21 |
dataset:
|
22 |
-
name: Multilingual Sentiments
|
23 |
type: tyqiangz/multilingual-sentiments
|
|
|
24 |
metrics:
|
25 |
- type: accuracy
|
26 |
-
value: 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
---
|
28 |
|
29 |
# xlm-roberta-base-sentiment-multilingual-finetuned
|
@@ -46,7 +104,7 @@ The model was fine-tuned using the Hugging Face Transformers library.
|
|
46 |
|
47 |
training_args = TrainingArguments(
|
48 |
output_dir="./results",
|
49 |
-
num_train_epochs=
|
50 |
per_device_train_batch_size=16,
|
51 |
per_device_eval_batch_size=64,
|
52 |
warmup_steps=500,
|
@@ -60,7 +118,10 @@ training_args = TrainingArguments(
|
|
60 |
|
61 |
## Evaluation results
|
62 |
|
63 |
-
'eval_accuracy': 0.
|
|
|
|
|
|
|
64 |
|
65 |
## Environmental impact
|
66 |
|
|
|
1 |
+
|
2 |
---
|
|
|
|
|
3 |
language:
|
4 |
- en
|
5 |
- ms
|
6 |
- zh
|
|
|
|
|
|
|
7 |
tags:
|
8 |
- sentiment-analysis
|
9 |
- text-classification
|
10 |
- multilingual
|
11 |
+
license: apache-2.0
|
12 |
+
datasets:
|
13 |
+
- tyqiangz/multilingual-sentiments
|
14 |
+
metrics:
|
15 |
+
- accuracy
|
16 |
model-index:
|
17 |
- name: xlm-roberta-base-sentiment-multilingual-finetuned
|
18 |
results:
|
|
|
20 |
type: text-classification
|
21 |
name: Text Classification
|
22 |
dataset:
|
|
|
23 |
type: tyqiangz/multilingual-sentiments
|
24 |
+
name: Multilingual Sentiments
|
25 |
metrics:
|
26 |
- type: accuracy
|
27 |
+
value: 0.7528205128205128
|
28 |
+
|
29 |
+
|
30 |
+
Baseline Scores:
|
31 |
+
Classification Report:
|
32 |
+
Negative:
|
33 |
+
Precision: 0.6153
|
34 |
+
Recall: 0.8292
|
35 |
+
F1-score: 0.7064
|
36 |
+
Support: 1680
|
37 |
+
Neutral:
|
38 |
+
Precision: 0.5381
|
39 |
+
Recall: 0.3035
|
40 |
+
F1-score: 0.3881
|
41 |
+
Support: 1443
|
42 |
+
Positive:
|
43 |
+
Precision: 0.7607
|
44 |
+
Recall: 0.7803
|
45 |
+
F1-score: 0.7704
|
46 |
+
Support: 1752
|
47 |
+
Metrics:
|
48 |
+
Accuracy:
|
49 |
+
Value: 0.6560
|
50 |
+
Support: 4875
|
51 |
+
Macro Avg:
|
52 |
+
Value: 0.6380
|
53 |
+
Support: 4875
|
54 |
+
Weighted Avg:
|
55 |
+
Value: 0.6447
|
56 |
+
Support: 4875
|
57 |
+
|
58 |
+
Finetuned Scores:
|
59 |
+
Classification Report:
|
60 |
+
Negative:
|
61 |
+
Precision: 0.7487
|
62 |
+
Recall: 0.7875
|
63 |
+
F1-score: 0.7676
|
64 |
+
Support: 1680
|
65 |
+
Neutral:
|
66 |
+
Precision: 0.6775
|
67 |
+
Recall: 0.6216
|
68 |
+
F1-score: 0.6484
|
69 |
+
Support: 1443
|
70 |
+
Positive:
|
71 |
+
Precision: 0.8128
|
72 |
+
Recall: 0.8276
|
73 |
+
F1-score: 0.8201
|
74 |
+
Support: 1752
|
75 |
+
Metrics:
|
76 |
+
Accuracy:
|
77 |
+
Value: 0.7528
|
78 |
+
Support: 4875
|
79 |
+
Macro Avg:
|
80 |
+
Value: 0.7463
|
81 |
+
Support: 4875
|
82 |
+
Weighted Avg:
|
83 |
+
Value: 0.7507
|
84 |
+
Support: 4875
|
85 |
---
|
86 |
|
87 |
# xlm-roberta-base-sentiment-multilingual-finetuned
|
|
|
104 |
|
105 |
training_args = TrainingArguments(
|
106 |
output_dir="./results",
|
107 |
+
num_train_epochs=5,
|
108 |
per_device_train_batch_size=16,
|
109 |
per_device_eval_batch_size=64,
|
110 |
warmup_steps=500,
|
|
|
118 |
|
119 |
## Evaluation results
|
120 |
|
121 |
+
'eval_accuracy': 0.7528205128205128, 'eval_f1': 0.7511924805177581, 'eval_precision': 0.7506612130427309, 'eval_recall': 0.7528205128205128
|
122 |
+
|
123 |
+
|
124 |
+
## Test Score :
|
125 |
|
126 |
## Environmental impact
|
127 |
|