terrencewee12 commited on
Commit
d60a132
·
verified ·
1 Parent(s): 15bbba9

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ language:
4
+ - ms
5
+ tags:
6
+ - sentiment-analysis
7
+ - text-classification
8
+ - multilingual
9
+ license: apache-2.0
10
+ datasets:
11
+ - tyqiangz/multilingual-sentiments
12
+ metrics:
13
+ - accuracy
14
+ model-index:
15
+ - name: xlm-roberta-base-sentiment-multilingual-finetuned
16
+ results:
17
+ - task:
18
+ type: text-classification
19
+ name: Text Classification
20
+ dataset:
21
+ chinese: scfengv/TVL_Sentiment_Analysis
22
+ malay : tyqiangz/multilingual-sentiments", "malay"
23
+ english: "argilla/twitter-coronavirus"
24
+
25
+ metrics:
26
+ - type: accuracy
27
+ value: 0.7244
28
+
29
+ # xlm-roberta-base-sentiment-multilingual-finetuned
30
+
31
+ ## Model description
32
+
33
+ This is a fine-tuned version of the [cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual) model, trained on the [tyqiangz/multilingual-sentiments](https://huggingface.co/datasets/tyqiangz/multilingual-sentiments) dataset. It's designed for multilingual sentiment analysis in English, Malay, and Chinese.
34
+
35
+ ## Intended uses & limitations
36
+
37
+ This model is intended for sentiment analysis tasks in Malay. It can classify text into three sentiment categories: positive, negative, and neutral.
38
+
39
+ ## Training and evaluation data
40
+
41
+ The model was trained and evaluated on the [tyqiangz/multilingual-sentiments](https://huggingface.co/datasets/tyqiangz/multilingual-sentiments) dataset.
42
+
43
+ ## Training procedure
44
+
45
+ The model was fine-tuned using the Hugging Face Transformers library.
46
+
47
+ training_args = TrainingArguments(
48
+ output_dir="./results",
49
+ num_train_epochs=2,
50
+ per_device_train_batch_size=16,
51
+ per_device_eval_batch_size=64,
52
+ warmup_steps=500,
53
+ weight_decay=0.01,
54
+ logging_dir='./logs',
55
+ logging_steps=10,
56
+ evaluation_strategy="steps",
57
+ save_strategy="steps",
58
+ load_best_model_at_end=True,
59
+ )
60
+
61
+ ## Evaluation results
62
+
63
+ est results: {'eval_loss': 0.6420313119888306, 'eval_accuracy': 0.7243781094527363, 'eval_f1': 0.712778066703921, 'eval_precision': 0.7391632387942287, 'eval_recall': 0.7243781094527363, 'eval_runtime': 4.681, 'eval_samples_per_second': 214.696, 'eval_steps_per_second': 3.418, 'epoch': 2.0}
64
+
65
+ ## Environmental impact
66
+
67
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
68
+
69
+