terrencewee12
commited on
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
language:
|
4 |
+
- ms
|
5 |
+
tags:
|
6 |
+
- sentiment-analysis
|
7 |
+
- text-classification
|
8 |
+
- multilingual
|
9 |
+
license: apache-2.0
|
10 |
+
datasets:
|
11 |
+
- tyqiangz/multilingual-sentiments
|
12 |
+
metrics:
|
13 |
+
- accuracy
|
14 |
+
model-index:
|
15 |
+
- name: xlm-roberta-base-sentiment-multilingual-finetuned
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
type: text-classification
|
19 |
+
name: Text Classification
|
20 |
+
dataset:
|
21 |
+
chinese: scfengv/TVL_Sentiment_Analysis
|
22 |
+
malay : tyqiangz/multilingual-sentiments", "malay"
|
23 |
+
english: "argilla/twitter-coronavirus"
|
24 |
+
|
25 |
+
metrics:
|
26 |
+
- type: accuracy
|
27 |
+
value: 0.7244
|
28 |
+
|
29 |
+
# xlm-roberta-base-sentiment-multilingual-finetuned
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
This is a fine-tuned version of the [cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual) model, trained on the [tyqiangz/multilingual-sentiments](https://huggingface.co/datasets/tyqiangz/multilingual-sentiments) dataset. It's designed for multilingual sentiment analysis in English, Malay, and Chinese.
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
This model is intended for sentiment analysis tasks in Malay. It can classify text into three sentiment categories: positive, negative, and neutral.
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
The model was trained and evaluated on the [tyqiangz/multilingual-sentiments](https://huggingface.co/datasets/tyqiangz/multilingual-sentiments) dataset.
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
The model was fine-tuned using the Hugging Face Transformers library.
|
46 |
+
|
47 |
+
training_args = TrainingArguments(
|
48 |
+
output_dir="./results",
|
49 |
+
num_train_epochs=2,
|
50 |
+
per_device_train_batch_size=16,
|
51 |
+
per_device_eval_batch_size=64,
|
52 |
+
warmup_steps=500,
|
53 |
+
weight_decay=0.01,
|
54 |
+
logging_dir='./logs',
|
55 |
+
logging_steps=10,
|
56 |
+
evaluation_strategy="steps",
|
57 |
+
save_strategy="steps",
|
58 |
+
load_best_model_at_end=True,
|
59 |
+
)
|
60 |
+
|
61 |
+
## Evaluation results
|
62 |
+
|
63 |
+
est results: {'eval_loss': 0.6420313119888306, 'eval_accuracy': 0.7243781094527363, 'eval_f1': 0.712778066703921, 'eval_precision': 0.7391632387942287, 'eval_recall': 0.7243781094527363, 'eval_runtime': 4.681, 'eval_samples_per_second': 214.696, 'eval_steps_per_second': 3.418, 'epoch': 2.0}
|
64 |
+
|
65 |
+
## Environmental impact
|
66 |
+
|
67 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
68 |
+
|
69 |
+
|