--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: wiki_hu_ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann config: hu split: validation args: hu metrics: - name: Precision type: precision value: 0.8669236159775753 - name: Recall type: recall value: 0.8782479057219935 - name: F1 type: f1 value: 0.872549019607843 - name: Accuracy type: accuracy value: 0.9632061446977205 --- # wiki_hu_ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.1585 - Precision: 0.8669 - Recall: 0.8782 - F1: 0.8725 - Accuracy: 0.9632 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2429 | 1.0 | 1250 | 0.1849 | 0.8047 | 0.8153 | 0.8100 | 0.9448 | | 0.1371 | 2.0 | 2500 | 0.1505 | 0.8455 | 0.8577 | 0.8516 | 0.9576 | | 0.0986 | 3.0 | 3750 | 0.1516 | 0.8520 | 0.8708 | 0.8613 | 0.9603 | | 0.0695 | 4.0 | 5000 | 0.1500 | 0.8656 | 0.8745 | 0.8700 | 0.9624 | | 0.0489 | 5.0 | 6250 | 0.1585 | 0.8669 | 0.8782 | 0.8725 | 0.9632 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3