File size: 2,395 Bytes
ccfc330 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- wikiann
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: wiki_hu_ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wikiann
type: wikiann
config: hu
split: validation
args: hu
metrics:
- name: Precision
type: precision
value: 0.8669236159775753
- name: Recall
type: recall
value: 0.8782479057219935
- name: F1
type: f1
value: 0.872549019607843
- name: Accuracy
type: accuracy
value: 0.9632061446977205
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wiki_hu_ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the wikiann dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1585
- Precision: 0.8669
- Recall: 0.8782
- F1: 0.8725
- Accuracy: 0.9632
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2429 | 1.0 | 1250 | 0.1849 | 0.8047 | 0.8153 | 0.8100 | 0.9448 |
| 0.1371 | 2.0 | 2500 | 0.1505 | 0.8455 | 0.8577 | 0.8516 | 0.9576 |
| 0.0986 | 3.0 | 3750 | 0.1516 | 0.8520 | 0.8708 | 0.8613 | 0.9603 |
| 0.0695 | 4.0 | 5000 | 0.1500 | 0.8656 | 0.8745 | 0.8700 | 0.9624 |
| 0.0489 | 5.0 | 6250 | 0.1585 | 0.8669 | 0.8782 | 0.8725 | 0.9632 |
### Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|