--- language: - mn base_model: tergel/bert-base-mongolian-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-mongolian-uncased-ner results: [] --- # bert-base-mongolian-uncased-ner This model is a fine-tuned version of [tergel/bert-base-mongolian-uncased](https://huggingface.co./tergel/bert-base-mongolian-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1610 - Precision: 0.8207 - Recall: 0.8426 - F1: 0.8315 - Accuracy: 0.9593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3447 | 1.0 | 60 | 0.1578 | 0.7339 | 0.7793 | 0.7559 | 0.9468 | | 0.136 | 2.0 | 120 | 0.1348 | 0.7915 | 0.8026 | 0.7970 | 0.9545 | | 0.0997 | 3.0 | 180 | 0.1325 | 0.8020 | 0.8288 | 0.8152 | 0.9570 | | 0.0761 | 4.0 | 240 | 0.1351 | 0.8086 | 0.8310 | 0.8196 | 0.9584 | | 0.0595 | 5.0 | 300 | 0.1396 | 0.8173 | 0.8334 | 0.8253 | 0.9591 | | 0.0485 | 6.0 | 360 | 0.1455 | 0.8084 | 0.8313 | 0.8197 | 0.9576 | | 0.0399 | 7.0 | 420 | 0.1548 | 0.8135 | 0.8377 | 0.8254 | 0.9581 | | 0.0354 | 8.0 | 480 | 0.1586 | 0.8179 | 0.8407 | 0.8292 | 0.9587 | | 0.0315 | 9.0 | 540 | 0.1599 | 0.8165 | 0.8414 | 0.8288 | 0.9587 | | 0.0283 | 10.0 | 600 | 0.1610 | 0.8207 | 0.8426 | 0.8315 | 0.9593 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1