File size: 2,477 Bytes
553dbfe b413fa9 553dbfe e358547 553dbfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
tags:
- tensorflowtts
- audio
- text-to-speech
- mel-to-wav
language: en
license: apache-2.0
datasets:
- ljspeech
widget:
- text: "Hello, how are you doing?"
---
# MelGAN trained on LJSpeech (En)
This repository provides a pretrained [MelGAN](https://arxiv.org/abs/1910.06711) trained on LJSpeech dataset (Eng). For a detail of the model, we encourage you to read more about
[TensorFlowTTS](https://github.com/TensorSpeech/TensorFlowTTS).
## Install TensorFlowTTS
First of all, please install TensorFlowTTS with the following command:
```
pip install TensorFlowTTS
```
### Converting your Text to Wav
```python
import soundfile as sf
import numpy as np
import tensorflow as tf
from tensorflow_tts.inference import AutoProcessor
from tensorflow_tts.inference import TFAutoModel
processor = AutoProcessor.from_pretrained("tensorspeech/tts-tacotron2-ljspeech-en")
tacotron2 = TFAutoModel.from_pretrained("tensorspeech/tts-tacotron2-ljspeech-en")
melgan = TFAutoModel.from_pretrained("tensorspeech/tts-melgan-ljspeech-en")
text = "This is a demo to show how to use our model to generate mel spectrogram from raw text."
input_ids = processor.text_to_sequence(text)
# tacotron2 inference (text-to-mel)
decoder_output, mel_outputs, stop_token_prediction, alignment_history = tacotron2.inference(
input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0),
input_lengths=tf.convert_to_tensor([len(input_ids)], tf.int32),
speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32),
)
# melgan inference (mel-to-wav)
audio = melgan.inference(mel_outputs)[0, :, 0]
# save to file
sf.write('./audio.wav', audio, 22050, "PCM_16")
```
#### Referencing MelGAN
```
@misc{kumar2019melgan,
title={MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis},
author={Kundan Kumar and Rithesh Kumar and Thibault de Boissiere and Lucas Gestin and Wei Zhen Teoh and Jose Sotelo and Alexandre de Brebisson and Yoshua Bengio and Aaron Courville},
year={2019},
eprint={1910.06711},
archivePrefix={arXiv},
primaryClass={eess.AS}
}
```
#### Referencing TensorFlowTTS
```
@misc{TFTTS,
author = {Minh Nguyen, Alejandro Miguel Velasquez, Erogol, Kuan Chen, Dawid Kobus, Takuya Ebata,
Trinh Le and Yunchao He},
title = {TensorflowTTS},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\\url{https://github.com/TensorSpeech/TensorFlowTTS}},
}
``` |