--- language: - ja tags: - japanese-stablelm - causal-lm - TensorBlock - GGUF pipeline_tag: text-generation datasets: - wikipedia - mc4 - cc100 - oscar-corpus/OSCAR-2301 - oscar-corpus/OSCAR-2201 - cerebras/SlimPajama-627B license: - llama2 extra_gated_fields: Name: text Email: text Country: text Organization or Affiliation: text I allow Stability AI to contact me about information related to its models and research: checkbox base_model: stabilityai/japanese-stablelm-base-beta-70b ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## stabilityai/japanese-stablelm-base-beta-70b - GGUF This repo contains GGUF format model files for [stabilityai/japanese-stablelm-base-beta-70b](https://huggingface.co./stabilityai/japanese-stablelm-base-beta-70b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [japanese-stablelm-base-beta-70b-Q2_K.gguf](https://huggingface.co./tensorblock/japanese-stablelm-base-beta-70b-GGUF/blob/main/japanese-stablelm-base-beta-70b-Q2_K.gguf) | Q2_K | 25.462 GB | smallest, significant quality loss - not recommended for most purposes | | [japanese-stablelm-base-beta-70b-Q3_K_S.gguf](https://huggingface.co./tensorblock/japanese-stablelm-base-beta-70b-GGUF/blob/main/japanese-stablelm-base-beta-70b-Q3_K_S.gguf) | Q3_K_S | 29.919 GB | very small, high quality loss | | [japanese-stablelm-base-beta-70b-Q3_K_M.gguf](https://huggingface.co./tensorblock/japanese-stablelm-base-beta-70b-GGUF/blob/main/japanese-stablelm-base-beta-70b-Q3_K_M.gguf) | Q3_K_M | 33.275 GB | very small, high quality loss | | [japanese-stablelm-base-beta-70b-Q3_K_L.gguf](https://huggingface.co./tensorblock/japanese-stablelm-base-beta-70b-GGUF/blob/main/japanese-stablelm-base-beta-70b-Q3_K_L.gguf) | Q3_K_L | 36.148 GB | small, substantial quality loss | | [japanese-stablelm-base-beta-70b-Q4_0.gguf](https://huggingface.co./tensorblock/japanese-stablelm-base-beta-70b-GGUF/blob/main/japanese-stablelm-base-beta-70b-Q4_0.gguf) | Q4_0 | 38.872 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [japanese-stablelm-base-beta-70b-Q4_K_S.gguf](https://huggingface.co./tensorblock/japanese-stablelm-base-beta-70b-GGUF/blob/main/japanese-stablelm-base-beta-70b-Q4_K_S.gguf) | Q4_K_S | 39.250 GB | small, greater quality loss | | [japanese-stablelm-base-beta-70b-Q4_K_M.gguf](https://huggingface.co./tensorblock/japanese-stablelm-base-beta-70b-GGUF/blob/main/japanese-stablelm-base-beta-70b-Q4_K_M.gguf) | Q4_K_M | 41.423 GB | medium, balanced quality - recommended | | [japanese-stablelm-base-beta-70b-Q5_0.gguf](https://huggingface.co./tensorblock/japanese-stablelm-base-beta-70b-GGUF/blob/main/japanese-stablelm-base-beta-70b-Q5_0.gguf) | Q5_0 | 47.461 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [japanese-stablelm-base-beta-70b-Q5_K_S.gguf](https://huggingface.co./tensorblock/japanese-stablelm-base-beta-70b-GGUF/blob/main/japanese-stablelm-base-beta-70b-Q5_K_S.gguf) | Q5_K_S | 47.461 GB | large, low quality loss - recommended | | [japanese-stablelm-base-beta-70b-Q5_K_M.gguf](https://huggingface.co./tensorblock/japanese-stablelm-base-beta-70b-GGUF/blob/main/japanese-stablelm-base-beta-70b-Q5_K_M.gguf) | Q5_K_M | 48.754 GB | large, very low quality loss - recommended | | [japanese-stablelm-base-beta-70b-Q8_0](https://huggingface.co./tensorblock/japanese-stablelm-base-beta-70b-GGUF/blob/main/japanese-stablelm-base-beta-70b-Q8_0) | Q6_K | 17.325 GB | very large, extremely low quality loss | | [japanese-stablelm-base-beta-70b-Q6_K](https://huggingface.co./tensorblock/japanese-stablelm-base-beta-70b-GGUF/blob/main/japanese-stablelm-base-beta-70b-Q6_K) | Q8_0 | 56.587 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/japanese-stablelm-base-beta-70b-GGUF --include "japanese-stablelm-base-beta-70b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/japanese-stablelm-base-beta-70b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```