--- library_name: transformers license: gemma license_link: https://ai.google.dev/gemma/terms pipeline_tag: text-generation extra_gated_heading: Access CodeGemma on Hugging Face extra_gated_prompt: To access CodeGemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license widget: - text: 'user Write a Python function to calculate the nth fibonacci number. model ' inference: parameters: max_new_tokens: 200 base_model: google/codegemma-7b-it tags: - TensorBlock - GGUF ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## google/codegemma-7b-it - GGUF This repo contains GGUF format model files for [google/codegemma-7b-it](https://huggingface.co./google/codegemma-7b-it). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` user {prompt} model ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [codegemma-7b-it-Q2_K.gguf](https://huggingface.co./tensorblock/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q2_K.gguf) | Q2_K | 3.481 GB | smallest, significant quality loss - not recommended for most purposes | | [codegemma-7b-it-Q3_K_S.gguf](https://huggingface.co./tensorblock/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q3_K_S.gguf) | Q3_K_S | 3.982 GB | very small, high quality loss | | [codegemma-7b-it-Q3_K_M.gguf](https://huggingface.co./tensorblock/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q3_K_M.gguf) | Q3_K_M | 4.369 GB | very small, high quality loss | | [codegemma-7b-it-Q3_K_L.gguf](https://huggingface.co./tensorblock/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q3_K_L.gguf) | Q3_K_L | 4.709 GB | small, substantial quality loss | | [codegemma-7b-it-Q4_0.gguf](https://huggingface.co./tensorblock/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q4_0.gguf) | Q4_0 | 5.012 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [codegemma-7b-it-Q4_K_S.gguf](https://huggingface.co./tensorblock/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q4_K_S.gguf) | Q4_K_S | 5.046 GB | small, greater quality loss | | [codegemma-7b-it-Q4_K_M.gguf](https://huggingface.co./tensorblock/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q4_K_M.gguf) | Q4_K_M | 5.330 GB | medium, balanced quality - recommended | | [codegemma-7b-it-Q5_0.gguf](https://huggingface.co./tensorblock/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q5_0.gguf) | Q5_0 | 5.981 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [codegemma-7b-it-Q5_K_S.gguf](https://huggingface.co./tensorblock/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q5_K_S.gguf) | Q5_K_S | 5.981 GB | large, low quality loss - recommended | | [codegemma-7b-it-Q5_K_M.gguf](https://huggingface.co./tensorblock/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q5_K_M.gguf) | Q5_K_M | 6.145 GB | large, very low quality loss - recommended | | [codegemma-7b-it-Q6_K.gguf](https://huggingface.co./tensorblock/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q6_K.gguf) | Q6_K | 7.010 GB | very large, extremely low quality loss | | [codegemma-7b-it-Q8_0.gguf](https://huggingface.co./tensorblock/codegemma-7b-it-GGUF/blob/main/codegemma-7b-it-Q8_0.gguf) | Q8_0 | 9.078 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/codegemma-7b-it-GGUF --include "codegemma-7b-it-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/codegemma-7b-it-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```