--- inference: false library_name: transformers language: - en - fr - de - es - it - pt - ja - ko - zh - ar - el - fa - pl - id - cs - he - hi - nl - ro - ru - tr - uk - vi license: cc-by-nc-4.0 extra_gated_prompt: By submitting this form, you agree to the [License Agreement](https://cohere.com/c4ai-cc-by-nc-license) and acknowledge that the information you provide will be collected, used, and shared in accordance with Cohere’s [Privacy Policy]( https://cohere.com/privacy). You’ll receive email updates about C4AI and Cohere research, events, products and services. You can unsubscribe at any time. extra_gated_fields: Name: text Affiliation: text Country: country I agree to use this model for non-commercial use ONLY: checkbox tags: - TensorBlock - GGUF base_model: CohereForAI/aya-expanse-32b ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## CohereForAI/aya-expanse-32b - GGUF This repo contains GGUF format model files for [CohereForAI/aya-expanse-32b](https://huggingface.co./CohereForAI/aya-expanse-32b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` <|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{system_prompt}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>{prompt}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [aya-expanse-32b-Q2_K.gguf](https://huggingface.co./tensorblock/aya-expanse-32b-GGUF/blob/main/aya-expanse-32b-Q2_K.gguf) | Q2_K | 12.811 GB | smallest, significant quality loss - not recommended for most purposes | | [aya-expanse-32b-Q3_K_S.gguf](https://huggingface.co./tensorblock/aya-expanse-32b-GGUF/blob/main/aya-expanse-32b-Q3_K_S.gguf) | Q3_K_S | 14.709 GB | very small, high quality loss | | [aya-expanse-32b-Q3_K_M.gguf](https://huggingface.co./tensorblock/aya-expanse-32b-GGUF/blob/main/aya-expanse-32b-Q3_K_M.gguf) | Q3_K_M | 16.232 GB | very small, high quality loss | | [aya-expanse-32b-Q3_K_L.gguf](https://huggingface.co./tensorblock/aya-expanse-32b-GGUF/blob/main/aya-expanse-32b-Q3_K_L.gguf) | Q3_K_L | 17.563 GB | small, substantial quality loss | | [aya-expanse-32b-Q4_0.gguf](https://huggingface.co./tensorblock/aya-expanse-32b-GGUF/blob/main/aya-expanse-32b-Q4_0.gguf) | Q4_0 | 18.719 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [aya-expanse-32b-Q4_K_S.gguf](https://huggingface.co./tensorblock/aya-expanse-32b-GGUF/blob/main/aya-expanse-32b-Q4_K_S.gguf) | Q4_K_S | 18.850 GB | small, greater quality loss | | [aya-expanse-32b-Q4_K_M.gguf](https://huggingface.co./tensorblock/aya-expanse-32b-GGUF/blob/main/aya-expanse-32b-Q4_K_M.gguf) | Q4_K_M | 19.801 GB | medium, balanced quality - recommended | | [aya-expanse-32b-Q5_0.gguf](https://huggingface.co./tensorblock/aya-expanse-32b-GGUF/blob/main/aya-expanse-32b-Q5_0.gguf) | Q5_0 | 22.494 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [aya-expanse-32b-Q5_K_S.gguf](https://huggingface.co./tensorblock/aya-expanse-32b-GGUF/blob/main/aya-expanse-32b-Q5_K_S.gguf) | Q5_K_S | 22.494 GB | large, low quality loss - recommended | | [aya-expanse-32b-Q5_K_M.gguf](https://huggingface.co./tensorblock/aya-expanse-32b-GGUF/blob/main/aya-expanse-32b-Q5_K_M.gguf) | Q5_K_M | 23.051 GB | large, very low quality loss - recommended | | [aya-expanse-32b-Q6_K.gguf](https://huggingface.co./tensorblock/aya-expanse-32b-GGUF/blob/main/aya-expanse-32b-Q6_K.gguf) | Q6_K | 26.505 GB | very large, extremely low quality loss | | [aya-expanse-32b-Q8_0.gguf](https://huggingface.co./tensorblock/aya-expanse-32b-GGUF/blob/main/aya-expanse-32b-Q8_0.gguf) | Q8_0 | 34.327 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/aya-expanse-32b-GGUF --include "aya-expanse-32b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/aya-expanse-32b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```