Upload folder using huggingface_hub
Browse files- hunyuan3d-paint-v2-0/.gitattributes +35 -0
- hunyuan3d-paint-v2-0/feature_extractor/preprocessor_config.json +20 -0
- hunyuan3d-paint-v2-0/model_index.json +33 -0
- hunyuan3d-paint-v2-0/scheduler/scheduler_config.json +15 -0
- hunyuan3d-paint-v2-0/text_encoder/config.json +25 -0
- hunyuan3d-paint-v2-0/text_encoder/pytorch_model.bin +3 -0
- hunyuan3d-paint-v2-0/tokenizer/merges.txt +0 -0
- hunyuan3d-paint-v2-0/tokenizer/special_tokens_map.json +24 -0
- hunyuan3d-paint-v2-0/tokenizer/tokenizer_config.json +34 -0
- hunyuan3d-paint-v2-0/tokenizer/vocab.json +0 -0
- hunyuan3d-paint-v2-0/unet/config.json +45 -0
- hunyuan3d-paint-v2-0/unet/diffusion_pytorch_model.bin +3 -0
- hunyuan3d-paint-v2-0/unet/modules.py +437 -0
- hunyuan3d-paint-v2-0/vae/config.json +29 -0
- hunyuan3d-paint-v2-0/vae/diffusion_pytorch_model.bin +3 -0
hunyuan3d-paint-v2-0/.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
hunyuan3d-paint-v2-0/feature_extractor/preprocessor_config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": 224,
|
3 |
+
"do_center_crop": true,
|
4 |
+
"do_convert_rgb": true,
|
5 |
+
"do_normalize": true,
|
6 |
+
"do_resize": true,
|
7 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
8 |
+
"image_mean": [
|
9 |
+
0.48145466,
|
10 |
+
0.4578275,
|
11 |
+
0.40821073
|
12 |
+
],
|
13 |
+
"image_std": [
|
14 |
+
0.26862954,
|
15 |
+
0.26130258,
|
16 |
+
0.27577711
|
17 |
+
],
|
18 |
+
"resample": 3,
|
19 |
+
"size": 224
|
20 |
+
}
|
hunyuan3d-paint-v2-0/model_index.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "StableDiffusionPipeline",
|
3 |
+
"_diffusers_version": "0.23.1",
|
4 |
+
"feature_extractor": [
|
5 |
+
"transformers",
|
6 |
+
"CLIPImageProcessor"
|
7 |
+
],
|
8 |
+
"requires_safety_checker": false,
|
9 |
+
"safety_checker": [
|
10 |
+
null,
|
11 |
+
null
|
12 |
+
],
|
13 |
+
"scheduler": [
|
14 |
+
"diffusers",
|
15 |
+
"DDIMScheduler"
|
16 |
+
],
|
17 |
+
"text_encoder": [
|
18 |
+
"transformers",
|
19 |
+
"CLIPTextModel"
|
20 |
+
],
|
21 |
+
"tokenizer": [
|
22 |
+
"transformers",
|
23 |
+
"CLIPTokenizer"
|
24 |
+
],
|
25 |
+
"unet": [
|
26 |
+
"modules",
|
27 |
+
"UNet2p5DConditionModel"
|
28 |
+
],
|
29 |
+
"vae": [
|
30 |
+
"diffusers",
|
31 |
+
"AutoencoderKL"
|
32 |
+
]
|
33 |
+
}
|
hunyuan3d-paint-v2-0/scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "DDIMScheduler",
|
3 |
+
"_diffusers_version": "0.23.1",
|
4 |
+
"beta_end": 0.012,
|
5 |
+
"beta_schedule": "scaled_linear",
|
6 |
+
"beta_start": 0.00085,
|
7 |
+
"clip_sample": false,
|
8 |
+
"num_train_timesteps": 1000,
|
9 |
+
"prediction_type": "v_prediction",
|
10 |
+
"set_alpha_to_one": true,
|
11 |
+
"steps_offset": 1,
|
12 |
+
"trained_betas": null,
|
13 |
+
"timestep_spacing": "trailing",
|
14 |
+
"rescale_betas_zero_snr": true
|
15 |
+
}
|
hunyuan3d-paint-v2-0/text_encoder/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "stabilityai/stable-diffusion-2",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPTextModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"dropout": 0.0,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"initializer_factor": 1.0,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 77,
|
17 |
+
"model_type": "clip_text_model",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 23,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"projection_dim": 512,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.25.0.dev0",
|
24 |
+
"vocab_size": 49408
|
25 |
+
}
|
hunyuan3d-paint-v2-0/text_encoder/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3e254d7b61353497ea0be2c4013df4ea8f739ee88cffa0ba58cd085459ed565
|
3 |
+
size 1361671895
|
hunyuan3d-paint-v2-0/tokenizer/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hunyuan3d-paint-v2-0/tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "!",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
hunyuan3d-paint-v2-0/tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": {
|
4 |
+
"__type": "AddedToken",
|
5 |
+
"content": "<|startoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false
|
10 |
+
},
|
11 |
+
"do_lower_case": true,
|
12 |
+
"eos_token": {
|
13 |
+
"__type": "AddedToken",
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": true,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"errors": "replace",
|
21 |
+
"model_max_length": 77,
|
22 |
+
"name_or_path": "stabilityai/stable-diffusion-2",
|
23 |
+
"pad_token": "<|endoftext|>",
|
24 |
+
"special_tokens_map_file": "./special_tokens_map.json",
|
25 |
+
"tokenizer_class": "CLIPTokenizer",
|
26 |
+
"unk_token": {
|
27 |
+
"__type": "AddedToken",
|
28 |
+
"content": "<|endoftext|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
}
|
34 |
+
}
|
hunyuan3d-paint-v2-0/tokenizer/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hunyuan3d-paint-v2-0/unet/config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNet2DConditionModel",
|
3 |
+
"_diffusers_version": "0.10.0.dev0",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"attention_head_dim": [
|
6 |
+
5,
|
7 |
+
10,
|
8 |
+
20,
|
9 |
+
20
|
10 |
+
],
|
11 |
+
"block_out_channels": [
|
12 |
+
320,
|
13 |
+
640,
|
14 |
+
1280,
|
15 |
+
1280
|
16 |
+
],
|
17 |
+
"center_input_sample": false,
|
18 |
+
"cross_attention_dim": 1024,
|
19 |
+
"down_block_types": [
|
20 |
+
"CrossAttnDownBlock2D",
|
21 |
+
"CrossAttnDownBlock2D",
|
22 |
+
"CrossAttnDownBlock2D",
|
23 |
+
"DownBlock2D"
|
24 |
+
],
|
25 |
+
"downsample_padding": 1,
|
26 |
+
"dual_cross_attention": false,
|
27 |
+
"flip_sin_to_cos": true,
|
28 |
+
"freq_shift": 0,
|
29 |
+
"in_channels": 4,
|
30 |
+
"layers_per_block": 2,
|
31 |
+
"mid_block_scale_factor": 1,
|
32 |
+
"norm_eps": 1e-05,
|
33 |
+
"norm_num_groups": 32,
|
34 |
+
"num_class_embeds": null,
|
35 |
+
"only_cross_attention": false,
|
36 |
+
"out_channels": 4,
|
37 |
+
"sample_size": 64,
|
38 |
+
"up_block_types": [
|
39 |
+
"UpBlock2D",
|
40 |
+
"CrossAttnUpBlock2D",
|
41 |
+
"CrossAttnUpBlock2D",
|
42 |
+
"CrossAttnUpBlock2D"
|
43 |
+
],
|
44 |
+
"use_linear_projection": true
|
45 |
+
}
|
hunyuan3d-paint-v2-0/unet/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2efb4438e649e1ce152822dde082defe062cdd320bb9f1a27b9a4715d9c56e1a
|
3 |
+
size 3663114747
|
hunyuan3d-paint-v2-0/unet/modules.py
ADDED
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
from typing import Any, Dict, Optional
|
4 |
+
from diffusers.models import UNet2DConditionModel
|
5 |
+
|
6 |
+
import numpy
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
import torch.distributed
|
12 |
+
from PIL import Image
|
13 |
+
from einops import rearrange
|
14 |
+
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
|
15 |
+
|
16 |
+
import diffusers
|
17 |
+
from diffusers import (
|
18 |
+
AutoencoderKL,
|
19 |
+
DDPMScheduler,
|
20 |
+
DiffusionPipeline,
|
21 |
+
EulerAncestralDiscreteScheduler,
|
22 |
+
UNet2DConditionModel,
|
23 |
+
ImagePipelineOutput
|
24 |
+
)
|
25 |
+
from diffusers.image_processor import VaeImageProcessor
|
26 |
+
from diffusers.models.attention_processor import Attention, AttnProcessor, XFormersAttnProcessor, AttnProcessor2_0
|
27 |
+
from diffusers.utils.import_utils import is_xformers_available
|
28 |
+
|
29 |
+
|
30 |
+
from diffusers.utils import deprecate
|
31 |
+
|
32 |
+
from diffusers.models.transformers.transformer_2d import BasicTransformerBlock
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
|
37 |
+
# "feed_forward_chunk_size" can be used to save memory
|
38 |
+
if hidden_states.shape[chunk_dim] % chunk_size != 0:
|
39 |
+
raise ValueError(
|
40 |
+
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
41 |
+
)
|
42 |
+
|
43 |
+
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
|
44 |
+
ff_output = torch.cat(
|
45 |
+
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
46 |
+
dim=chunk_dim,
|
47 |
+
)
|
48 |
+
return ff_output
|
49 |
+
|
50 |
+
|
51 |
+
class Basic2p5DTransformerBlock(torch.nn.Module):
|
52 |
+
def __init__(self, transformer: BasicTransformerBlock, layer_name, use_ma=True, use_ra=True) -> None:
|
53 |
+
super().__init__()
|
54 |
+
self.transformer = transformer
|
55 |
+
self.layer_name = layer_name
|
56 |
+
self.use_ma = use_ma
|
57 |
+
self.use_ra = use_ra
|
58 |
+
|
59 |
+
# multiview attn
|
60 |
+
if self.use_ma:
|
61 |
+
self.attn_multiview = Attention(
|
62 |
+
query_dim=self.dim,
|
63 |
+
heads=self.num_attention_heads,
|
64 |
+
dim_head=self.attention_head_dim,
|
65 |
+
dropout=self.dropout,
|
66 |
+
bias=self.attention_bias,
|
67 |
+
cross_attention_dim=None,
|
68 |
+
upcast_attention=self.attn1.upcast_attention,
|
69 |
+
out_bias=True,
|
70 |
+
)
|
71 |
+
|
72 |
+
# ref attn
|
73 |
+
if self.use_ra:
|
74 |
+
self.attn_refview = Attention(
|
75 |
+
query_dim=self.dim,
|
76 |
+
heads=self.num_attention_heads,
|
77 |
+
dim_head=self.attention_head_dim,
|
78 |
+
dropout=self.dropout,
|
79 |
+
bias=self.attention_bias,
|
80 |
+
cross_attention_dim=None,
|
81 |
+
upcast_attention=self.attn1.upcast_attention,
|
82 |
+
out_bias=True,
|
83 |
+
)
|
84 |
+
|
85 |
+
def __getattr__(self, name: str):
|
86 |
+
try:
|
87 |
+
return super().__getattr__(name)
|
88 |
+
except AttributeError:
|
89 |
+
return getattr(self.transformer, name)
|
90 |
+
|
91 |
+
def forward(
|
92 |
+
self,
|
93 |
+
hidden_states: torch.Tensor,
|
94 |
+
attention_mask: Optional[torch.Tensor] = None,
|
95 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
96 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
97 |
+
timestep: Optional[torch.LongTensor] = None,
|
98 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
99 |
+
class_labels: Optional[torch.LongTensor] = None,
|
100 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
101 |
+
) -> torch.Tensor:
|
102 |
+
|
103 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
104 |
+
# 0. Self-Attention
|
105 |
+
batch_size = hidden_states.shape[0]
|
106 |
+
|
107 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
108 |
+
num_in_batch = cross_attention_kwargs.pop('num_in_batch', 1)
|
109 |
+
mode = cross_attention_kwargs.pop('mode', None)
|
110 |
+
mva_scale = cross_attention_kwargs.pop('mva_scale', 1.0)
|
111 |
+
ref_scale = cross_attention_kwargs.pop('ref_scale', 1.0)
|
112 |
+
condition_embed_dict = cross_attention_kwargs.pop("condition_embed_dict", None)
|
113 |
+
|
114 |
+
|
115 |
+
if self.norm_type == "ada_norm":
|
116 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
117 |
+
elif self.norm_type == "ada_norm_zero":
|
118 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
119 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
120 |
+
)
|
121 |
+
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
|
122 |
+
norm_hidden_states = self.norm1(hidden_states)
|
123 |
+
elif self.norm_type == "ada_norm_continuous":
|
124 |
+
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
125 |
+
elif self.norm_type == "ada_norm_single":
|
126 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
127 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
128 |
+
).chunk(6, dim=1)
|
129 |
+
norm_hidden_states = self.norm1(hidden_states)
|
130 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
131 |
+
else:
|
132 |
+
raise ValueError("Incorrect norm used")
|
133 |
+
|
134 |
+
if self.pos_embed is not None:
|
135 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
136 |
+
|
137 |
+
# 1. Prepare GLIGEN inputs
|
138 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
139 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
140 |
+
|
141 |
+
attn_output = self.attn1(
|
142 |
+
norm_hidden_states,
|
143 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
144 |
+
attention_mask=attention_mask,
|
145 |
+
**cross_attention_kwargs,
|
146 |
+
)
|
147 |
+
|
148 |
+
if self.norm_type == "ada_norm_zero":
|
149 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
150 |
+
elif self.norm_type == "ada_norm_single":
|
151 |
+
attn_output = gate_msa * attn_output
|
152 |
+
|
153 |
+
hidden_states = attn_output + hidden_states
|
154 |
+
if hidden_states.ndim == 4:
|
155 |
+
hidden_states = hidden_states.squeeze(1)
|
156 |
+
|
157 |
+
# 1.2 Reference Attention
|
158 |
+
if 'w' in mode:
|
159 |
+
condition_embed_dict[self.layer_name] = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch) # B, (N L), C
|
160 |
+
|
161 |
+
if 'r' in mode and self.use_ra:
|
162 |
+
condition_embed = condition_embed_dict[self.layer_name].unsqueeze(1).repeat(1,num_in_batch,1,1) # B N L C
|
163 |
+
condition_embed = rearrange(condition_embed, 'b n l c -> (b n) l c')
|
164 |
+
|
165 |
+
attn_output = self.attn_refview(
|
166 |
+
norm_hidden_states,
|
167 |
+
encoder_hidden_states=condition_embed,
|
168 |
+
attention_mask=None,
|
169 |
+
**cross_attention_kwargs
|
170 |
+
)
|
171 |
+
ref_scale_timing = ref_scale
|
172 |
+
if isinstance(ref_scale, torch.Tensor):
|
173 |
+
ref_scale_timing = ref_scale.unsqueeze(1).repeat(1, num_in_batch).view(-1)
|
174 |
+
for _ in range(attn_output.ndim - 1):
|
175 |
+
ref_scale_timing = ref_scale_timing.unsqueeze(-1)
|
176 |
+
hidden_states = ref_scale_timing * attn_output + hidden_states
|
177 |
+
if hidden_states.ndim == 4:
|
178 |
+
hidden_states = hidden_states.squeeze(1)
|
179 |
+
|
180 |
+
|
181 |
+
# 1.3 Multiview Attention
|
182 |
+
if num_in_batch > 1 and self.use_ma:
|
183 |
+
multivew_hidden_states = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch)
|
184 |
+
|
185 |
+
attn_output = self.attn_multiview(
|
186 |
+
multivew_hidden_states,
|
187 |
+
encoder_hidden_states=multivew_hidden_states,
|
188 |
+
**cross_attention_kwargs
|
189 |
+
)
|
190 |
+
|
191 |
+
attn_output = rearrange(attn_output, 'b (n l) c -> (b n) l c', n=num_in_batch)
|
192 |
+
|
193 |
+
hidden_states = mva_scale * attn_output + hidden_states
|
194 |
+
if hidden_states.ndim == 4:
|
195 |
+
hidden_states = hidden_states.squeeze(1)
|
196 |
+
|
197 |
+
# 1.2 GLIGEN Control
|
198 |
+
if gligen_kwargs is not None:
|
199 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
200 |
+
|
201 |
+
# 3. Cross-Attention
|
202 |
+
if self.attn2 is not None:
|
203 |
+
if self.norm_type == "ada_norm":
|
204 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
205 |
+
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
|
206 |
+
norm_hidden_states = self.norm2(hidden_states)
|
207 |
+
elif self.norm_type == "ada_norm_single":
|
208 |
+
# For PixArt norm2 isn't applied here:
|
209 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
210 |
+
norm_hidden_states = hidden_states
|
211 |
+
elif self.norm_type == "ada_norm_continuous":
|
212 |
+
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
213 |
+
else:
|
214 |
+
raise ValueError("Incorrect norm")
|
215 |
+
|
216 |
+
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
|
217 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
218 |
+
|
219 |
+
|
220 |
+
attn_output = self.attn2(
|
221 |
+
norm_hidden_states,
|
222 |
+
encoder_hidden_states=encoder_hidden_states,
|
223 |
+
attention_mask=encoder_attention_mask,
|
224 |
+
**cross_attention_kwargs,
|
225 |
+
)
|
226 |
+
|
227 |
+
hidden_states = attn_output + hidden_states
|
228 |
+
|
229 |
+
# 4. Feed-forward
|
230 |
+
# i2vgen doesn't have this norm 🤷♂️
|
231 |
+
if self.norm_type == "ada_norm_continuous":
|
232 |
+
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
233 |
+
elif not self.norm_type == "ada_norm_single":
|
234 |
+
norm_hidden_states = self.norm3(hidden_states)
|
235 |
+
|
236 |
+
if self.norm_type == "ada_norm_zero":
|
237 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
238 |
+
|
239 |
+
if self.norm_type == "ada_norm_single":
|
240 |
+
norm_hidden_states = self.norm2(hidden_states)
|
241 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
242 |
+
|
243 |
+
if self._chunk_size is not None:
|
244 |
+
# "feed_forward_chunk_size" can be used to save memory
|
245 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
246 |
+
else:
|
247 |
+
ff_output = self.ff(norm_hidden_states)
|
248 |
+
|
249 |
+
if self.norm_type == "ada_norm_zero":
|
250 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
251 |
+
elif self.norm_type == "ada_norm_single":
|
252 |
+
ff_output = gate_mlp * ff_output
|
253 |
+
|
254 |
+
hidden_states = ff_output + hidden_states
|
255 |
+
if hidden_states.ndim == 4:
|
256 |
+
hidden_states = hidden_states.squeeze(1)
|
257 |
+
|
258 |
+
return hidden_states
|
259 |
+
|
260 |
+
import copy
|
261 |
+
class UNet2p5DConditionModel(torch.nn.Module):
|
262 |
+
def __init__(self, unet: UNet2DConditionModel) -> None:
|
263 |
+
super().__init__()
|
264 |
+
self.unet = unet
|
265 |
+
|
266 |
+
self.use_ma = True
|
267 |
+
self.use_ra = True
|
268 |
+
self.use_camera_embedding = True
|
269 |
+
self.use_dual_stream = True
|
270 |
+
|
271 |
+
if self.use_dual_stream:
|
272 |
+
self.unet_dual = copy.deepcopy(unet)
|
273 |
+
self.init_attention(self.unet_dual)
|
274 |
+
self.init_attention(self.unet, use_ma=self.use_ma, use_ra=self.use_ra)
|
275 |
+
self.init_condition()
|
276 |
+
self.init_camera_embedding()
|
277 |
+
|
278 |
+
|
279 |
+
@staticmethod
|
280 |
+
def from_pretrained(pretrained_model_name_or_path, **kwargs):
|
281 |
+
torch_dtype = kwargs.pop('torch_dtype', torch.float32)
|
282 |
+
config_path = os.path.join(pretrained_model_name_or_path, 'config.json')
|
283 |
+
unet_ckpt_path = os.path.join(pretrained_model_name_or_path, 'diffusion_pytorch_model.bin')
|
284 |
+
with open(config_path, 'r', encoding='utf-8') as file:
|
285 |
+
config = json.load(file)
|
286 |
+
unet = UNet2DConditionModel(**config)
|
287 |
+
unet = UNet2p5DConditionModel(unet)
|
288 |
+
unet_ckpt = torch.load(unet_ckpt_path, map_location='cpu', weights_only=True)
|
289 |
+
unet.load_state_dict(unet_ckpt, strict=True)
|
290 |
+
unet = unet.to(torch_dtype)
|
291 |
+
return unet
|
292 |
+
|
293 |
+
def init_condition(self):
|
294 |
+
self.unet.conv_in = torch.nn.Conv2d(
|
295 |
+
12,
|
296 |
+
self.unet.conv_in.out_channels,
|
297 |
+
kernel_size=self.unet.conv_in.kernel_size,
|
298 |
+
stride=self.unet.conv_in.stride,
|
299 |
+
padding=self.unet.conv_in.padding,
|
300 |
+
dilation=self.unet.conv_in.dilation,
|
301 |
+
groups=self.unet.conv_in.groups,
|
302 |
+
bias=self.unet.conv_in.bias is not None)
|
303 |
+
self.unet.learned_text_clip_gen = nn.Parameter(torch.randn(1,77,1024))
|
304 |
+
self.unet.learned_text_clip_ref = nn.Parameter(torch.randn(1,77,1024))
|
305 |
+
|
306 |
+
def init_camera_embedding(self):
|
307 |
+
|
308 |
+
self.max_num_ref_image = 5
|
309 |
+
self.max_num_gen_image = 12*3+4*2
|
310 |
+
|
311 |
+
if self.use_camera_embedding:
|
312 |
+
time_embed_dim = 1280
|
313 |
+
self.unet.class_embedding = nn.Embedding(self.max_num_ref_image+self.max_num_gen_image, time_embed_dim)
|
314 |
+
|
315 |
+
|
316 |
+
def init_attention(self, unet, use_ma=False, use_ra=False):
|
317 |
+
|
318 |
+
for down_block_i, down_block in enumerate(unet.down_blocks):
|
319 |
+
if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention:
|
320 |
+
for attn_i, attn in enumerate(down_block.attentions):
|
321 |
+
for transformer_i, transformer in enumerate(attn.transformer_blocks):
|
322 |
+
if isinstance(transformer, BasicTransformerBlock):
|
323 |
+
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'down_{down_block_i}_{attn_i}_{transformer_i}', use_ma, use_ra)
|
324 |
+
|
325 |
+
|
326 |
+
if hasattr(unet.mid_block, "has_cross_attention") and unet.mid_block.has_cross_attention:
|
327 |
+
for attn_i, attn in enumerate(unet.mid_block.attentions):
|
328 |
+
for transformer_i, transformer in enumerate(attn.transformer_blocks):
|
329 |
+
if isinstance(transformer, BasicTransformerBlock):
|
330 |
+
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'mid_{attn_i}_{transformer_i}', use_ma, use_ra)
|
331 |
+
|
332 |
+
for up_block_i, up_block in enumerate(unet.up_blocks):
|
333 |
+
if hasattr(up_block, "has_cross_attention") and up_block.has_cross_attention:
|
334 |
+
for attn_i, attn in enumerate(up_block.attentions):
|
335 |
+
for transformer_i, transformer in enumerate(attn.transformer_blocks):
|
336 |
+
if isinstance(transformer, BasicTransformerBlock):
|
337 |
+
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'up_{up_block_i}_{attn_i}_{transformer_i}', use_ma, use_ra)
|
338 |
+
|
339 |
+
|
340 |
+
def __getattr__(self, name: str):
|
341 |
+
try:
|
342 |
+
return super().__getattr__(name)
|
343 |
+
except AttributeError:
|
344 |
+
return getattr(self.unet, name)
|
345 |
+
|
346 |
+
def forward(
|
347 |
+
self, sample, timestep, encoder_hidden_states,
|
348 |
+
*args, down_intrablock_additional_residuals=None,
|
349 |
+
down_block_res_samples=None, mid_block_res_sample=None,
|
350 |
+
**cached_condition,
|
351 |
+
):
|
352 |
+
B, N_gen, _, H, W = sample.shape
|
353 |
+
assert H == W
|
354 |
+
|
355 |
+
if self.use_camera_embedding:
|
356 |
+
camera_info_gen = cached_condition['camera_info_gen'] + self.max_num_ref_image
|
357 |
+
camera_info_gen = rearrange(camera_info_gen, 'b n -> (b n)')
|
358 |
+
else:
|
359 |
+
camera_info_gen = None
|
360 |
+
|
361 |
+
sample = [sample]
|
362 |
+
if 'normal_imgs' in cached_condition:
|
363 |
+
sample.append(cached_condition["normal_imgs"])
|
364 |
+
if 'position_imgs' in cached_condition:
|
365 |
+
sample.append(cached_condition["position_imgs"])
|
366 |
+
sample = torch.cat(sample, dim=2)
|
367 |
+
|
368 |
+
sample = rearrange(sample, 'b n c h w -> (b n) c h w')
|
369 |
+
|
370 |
+
encoder_hidden_states_gen = encoder_hidden_states.unsqueeze(1).repeat(1, N_gen, 1, 1)
|
371 |
+
encoder_hidden_states_gen = rearrange(encoder_hidden_states_gen, 'b n l c -> (b n) l c')
|
372 |
+
|
373 |
+
if self.use_ra:
|
374 |
+
if 'condition_embed_dict' in cached_condition:
|
375 |
+
condition_embed_dict = cached_condition['condition_embed_dict']
|
376 |
+
else:
|
377 |
+
condition_embed_dict = {}
|
378 |
+
ref_latents = cached_condition['ref_latents']
|
379 |
+
N_ref = ref_latents.shape[1]
|
380 |
+
if self.use_camera_embedding:
|
381 |
+
camera_info_ref = cached_condition['camera_info_ref']
|
382 |
+
camera_info_ref = rearrange(camera_info_ref, 'b n -> (b n)')
|
383 |
+
else:
|
384 |
+
camera_info_ref = None
|
385 |
+
|
386 |
+
ref_latents = rearrange(ref_latents, 'b n c h w -> (b n) c h w')
|
387 |
+
|
388 |
+
encoder_hidden_states_ref = self.unet.learned_text_clip_ref.unsqueeze(1).repeat(B, N_ref, 1, 1)
|
389 |
+
encoder_hidden_states_ref = rearrange(encoder_hidden_states_ref, 'b n l c -> (b n) l c')
|
390 |
+
|
391 |
+
noisy_ref_latents = ref_latents
|
392 |
+
timestep_ref = 0
|
393 |
+
|
394 |
+
if self.use_dual_stream:
|
395 |
+
unet_ref = self.unet_dual
|
396 |
+
else:
|
397 |
+
unet_ref = self.unet
|
398 |
+
unet_ref(
|
399 |
+
noisy_ref_latents, timestep_ref,
|
400 |
+
encoder_hidden_states=encoder_hidden_states_ref,
|
401 |
+
class_labels=camera_info_ref,
|
402 |
+
# **kwargs
|
403 |
+
return_dict=False,
|
404 |
+
cross_attention_kwargs={
|
405 |
+
'mode':'w', 'num_in_batch':N_ref,
|
406 |
+
'condition_embed_dict':condition_embed_dict},
|
407 |
+
)
|
408 |
+
cached_condition['condition_embed_dict'] = condition_embed_dict
|
409 |
+
else:
|
410 |
+
condition_embed_dict = None
|
411 |
+
|
412 |
+
|
413 |
+
mva_scale = cached_condition.get('mva_scale', 1.0)
|
414 |
+
ref_scale = cached_condition.get('ref_scale', 1.0)
|
415 |
+
|
416 |
+
return self.unet(
|
417 |
+
sample, timestep,
|
418 |
+
encoder_hidden_states_gen, *args,
|
419 |
+
class_labels=camera_info_gen,
|
420 |
+
down_intrablock_additional_residuals=[
|
421 |
+
sample.to(dtype=self.unet.dtype) for sample in down_intrablock_additional_residuals
|
422 |
+
] if down_intrablock_additional_residuals is not None else None,
|
423 |
+
down_block_additional_residuals=[
|
424 |
+
sample.to(dtype=self.unet.dtype) for sample in down_block_res_samples
|
425 |
+
] if down_block_res_samples is not None else None,
|
426 |
+
mid_block_additional_residual=(
|
427 |
+
mid_block_res_sample.to(dtype=self.unet.dtype)
|
428 |
+
if mid_block_res_sample is not None else None
|
429 |
+
),
|
430 |
+
return_dict=False,
|
431 |
+
cross_attention_kwargs={
|
432 |
+
'mode':'r', 'num_in_batch':N_gen,
|
433 |
+
'condition_embed_dict':condition_embed_dict,
|
434 |
+
'mva_scale': mva_scale,
|
435 |
+
'ref_scale': ref_scale,
|
436 |
+
},
|
437 |
+
)
|
hunyuan3d-paint-v2-0/vae/config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKL",
|
3 |
+
"_diffusers_version": "0.10.0.dev0",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"block_out_channels": [
|
6 |
+
128,
|
7 |
+
256,
|
8 |
+
512,
|
9 |
+
512
|
10 |
+
],
|
11 |
+
"down_block_types": [
|
12 |
+
"DownEncoderBlock2D",
|
13 |
+
"DownEncoderBlock2D",
|
14 |
+
"DownEncoderBlock2D",
|
15 |
+
"DownEncoderBlock2D"
|
16 |
+
],
|
17 |
+
"in_channels": 3,
|
18 |
+
"latent_channels": 4,
|
19 |
+
"layers_per_block": 2,
|
20 |
+
"norm_num_groups": 32,
|
21 |
+
"out_channels": 3,
|
22 |
+
"sample_size": 768,
|
23 |
+
"up_block_types": [
|
24 |
+
"UpDecoderBlock2D",
|
25 |
+
"UpDecoderBlock2D",
|
26 |
+
"UpDecoderBlock2D",
|
27 |
+
"UpDecoderBlock2D"
|
28 |
+
]
|
29 |
+
}
|
hunyuan3d-paint-v2-0/vae/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b4889b6b1d4ce7ae320a02dedaeff1780ad77d415ea0d744b476155c6377ddc
|
3 |
+
size 334707217
|