tcwong commited on
Commit
678016a
1 Parent(s): dc5ce98

Upload 11 files

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: deepseek-ai/DeepSeek-Prover-V1.5-SFT
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "deepseek-ai/DeepSeek-Prover-V1.5-SFT",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 8,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 4,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "down_proj",
24
+ "v_proj",
25
+ "q_proj",
26
+ "up_proj",
27
+ "o_proj",
28
+ "k_proj",
29
+ "gate_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": true,
33
+ "use_rslora": true
34
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e4ec4498ca5064fccedf82c6a98b7b93fe8ca7efe87d103446c284f54b56e50
3
+ size 3319563640
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c07551c67531c30430edf3af80ae318aea4ddb653de9d14e6737a02925d5347f
3
+ size 22034924
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3971ad12c8fb23bb9ef2a3643008b10ea88afb91c790fbcfb66a9c30a029d09e
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe4cb0aee52386b91df738b384f955f4da79e653a724053679bf1d9ea7c3ae38
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin▁of▁sentence|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end▁of▁sentence|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "100000": {
7
+ "content": "<|begin▁of▁sentence|>",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "100001": {
15
+ "content": "<|end▁of▁sentence|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "100002": {
23
+ "content": "[PAD]",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<|begin▁of▁sentence|>",
32
+ "chat_template": "{%- set found_item = false -%}\n{%- for message in messages -%}\n {%- if message['role'] == 'system' -%}\n {%- set found_item = true -%}\n {%- endif -%}\n{%- endfor -%}\n{%- if not found_item -%}\n{{'You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.\\n'}}\n{%- endif %}\n{%- for message in messages %}\n {%- if message['role'] == 'system' %}\n{{ message['content'] }}\n {%- else %}\n {%- if message['role'] == 'user' %}\n{{'### Instruction:\\n' + message['content'] + '\\n'}}\n {%- else %}\n{{'### Response:\\n' + message['content'] + '\\n<|EOT|>\\n'}}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{{'### Response:\\n'}}\n",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "<|end▁of▁sentence|>",
35
+ "legacy": true,
36
+ "model_max_length": 16384,
37
+ "pad_token": "[PAD]",
38
+ "sp_model_kwargs": {},
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": null,
41
+ "use_default_system_prompt": false
42
+ }
trainer_state.json ADDED
@@ -0,0 +1,735 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.10999426990747452,
3
+ "best_model_checkpoint": "model_training/deepseek_prover_sft_no_err/checkpoints-by_file-09-07-09-00/checkpoint-450",
4
+ "epoch": 3.6548223350253806,
5
+ "eval_steps": 50,
6
+ "global_step": 450,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.04060913705583756,
13
+ "grad_norm": 90.72683715820312,
14
+ "learning_rate": 1e-05,
15
+ "loss": 12.7608,
16
+ "step": 5
17
+ },
18
+ {
19
+ "epoch": 0.08121827411167512,
20
+ "grad_norm": 64.71466827392578,
21
+ "learning_rate": 2e-05,
22
+ "loss": 9.7379,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.1218274111675127,
27
+ "grad_norm": 72.4654312133789,
28
+ "learning_rate": 3e-05,
29
+ "loss": 4.8295,
30
+ "step": 15
31
+ },
32
+ {
33
+ "epoch": 0.16243654822335024,
34
+ "grad_norm": 0.33800482749938965,
35
+ "learning_rate": 4e-05,
36
+ "loss": 0.7192,
37
+ "step": 20
38
+ },
39
+ {
40
+ "epoch": 0.20304568527918782,
41
+ "grad_norm": 0.41024672985076904,
42
+ "learning_rate": 5e-05,
43
+ "loss": 0.1739,
44
+ "step": 25
45
+ },
46
+ {
47
+ "epoch": 0.2436548223350254,
48
+ "grad_norm": 7.3582916259765625,
49
+ "learning_rate": 6e-05,
50
+ "loss": 0.1757,
51
+ "step": 30
52
+ },
53
+ {
54
+ "epoch": 0.28426395939086296,
55
+ "grad_norm": 0.308156818151474,
56
+ "learning_rate": 7e-05,
57
+ "loss": 0.15,
58
+ "step": 35
59
+ },
60
+ {
61
+ "epoch": 0.3248730964467005,
62
+ "grad_norm": 0.22839659452438354,
63
+ "learning_rate": 8e-05,
64
+ "loss": 0.1439,
65
+ "step": 40
66
+ },
67
+ {
68
+ "epoch": 0.36548223350253806,
69
+ "grad_norm": 0.9331194162368774,
70
+ "learning_rate": 9e-05,
71
+ "loss": 0.1336,
72
+ "step": 45
73
+ },
74
+ {
75
+ "epoch": 0.40609137055837563,
76
+ "grad_norm": 0.13771598041057587,
77
+ "learning_rate": 0.0001,
78
+ "loss": 0.1352,
79
+ "step": 50
80
+ },
81
+ {
82
+ "epoch": 0.40609137055837563,
83
+ "eval_loss": 0.14033491909503937,
84
+ "eval_runtime": 576.5709,
85
+ "eval_samples_per_second": 1.734,
86
+ "eval_steps_per_second": 0.217,
87
+ "step": 50
88
+ },
89
+ {
90
+ "epoch": 0.4467005076142132,
91
+ "grad_norm": 0.04095697030425072,
92
+ "learning_rate": 9.996842891446092e-05,
93
+ "loss": 0.1245,
94
+ "step": 55
95
+ },
96
+ {
97
+ "epoch": 0.4873096446700508,
98
+ "grad_norm": 0.11559335142374039,
99
+ "learning_rate": 9.987375552718133e-05,
100
+ "loss": 0.1208,
101
+ "step": 60
102
+ },
103
+ {
104
+ "epoch": 0.5279187817258884,
105
+ "grad_norm": 0.10437008738517761,
106
+ "learning_rate": 9.971609939582557e-05,
107
+ "loss": 0.1201,
108
+ "step": 65
109
+ },
110
+ {
111
+ "epoch": 0.5685279187817259,
112
+ "grad_norm": 0.05311759188771248,
113
+ "learning_rate": 9.9495659615402e-05,
114
+ "loss": 0.1317,
115
+ "step": 70
116
+ },
117
+ {
118
+ "epoch": 0.6091370558375635,
119
+ "grad_norm": 0.07723415642976761,
120
+ "learning_rate": 9.921271456683715e-05,
121
+ "loss": 0.1221,
122
+ "step": 75
123
+ },
124
+ {
125
+ "epoch": 0.649746192893401,
126
+ "grad_norm": 0.040255699306726456,
127
+ "learning_rate": 9.886762156542428e-05,
128
+ "loss": 0.112,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 0.6903553299492385,
133
+ "grad_norm": 0.028574412688612938,
134
+ "learning_rate": 9.846081640959007e-05,
135
+ "loss": 0.1086,
136
+ "step": 85
137
+ },
138
+ {
139
+ "epoch": 0.7309644670050761,
140
+ "grad_norm": 0.041674137115478516,
141
+ "learning_rate": 9.79928128305494e-05,
142
+ "loss": 0.1129,
143
+ "step": 90
144
+ },
145
+ {
146
+ "epoch": 0.7715736040609137,
147
+ "grad_norm": 0.04879468306899071,
148
+ "learning_rate": 9.746420184354334e-05,
149
+ "loss": 0.1096,
150
+ "step": 95
151
+ },
152
+ {
153
+ "epoch": 0.8121827411167513,
154
+ "grad_norm": 0.03487968072295189,
155
+ "learning_rate": 9.687565100147939e-05,
156
+ "loss": 0.1114,
157
+ "step": 100
158
+ },
159
+ {
160
+ "epoch": 0.8121827411167513,
161
+ "eval_loss": 0.12282345443964005,
162
+ "eval_runtime": 576.5189,
163
+ "eval_samples_per_second": 1.735,
164
+ "eval_steps_per_second": 0.217,
165
+ "step": 100
166
+ },
167
+ {
168
+ "epoch": 0.8527918781725888,
169
+ "grad_norm": 0.022248243913054466,
170
+ "learning_rate": 9.622790355191672e-05,
171
+ "loss": 0.1084,
172
+ "step": 105
173
+ },
174
+ {
175
+ "epoch": 0.8934010152284264,
176
+ "grad_norm": 0.028482923284173012,
177
+ "learning_rate": 9.552177749846083e-05,
178
+ "loss": 0.1137,
179
+ "step": 110
180
+ },
181
+ {
182
+ "epoch": 0.934010152284264,
183
+ "grad_norm": 0.030047094449400902,
184
+ "learning_rate": 9.475816456775313e-05,
185
+ "loss": 0.1128,
186
+ "step": 115
187
+ },
188
+ {
189
+ "epoch": 0.9746192893401016,
190
+ "grad_norm": 0.024480503052473068,
191
+ "learning_rate": 9.393802908335977e-05,
192
+ "loss": 0.1065,
193
+ "step": 120
194
+ },
195
+ {
196
+ "epoch": 1.015228426395939,
197
+ "grad_norm": 0.023714397102594376,
198
+ "learning_rate": 9.306240674798203e-05,
199
+ "loss": 0.1136,
200
+ "step": 125
201
+ },
202
+ {
203
+ "epoch": 1.0558375634517767,
204
+ "grad_norm": 0.028829872608184814,
205
+ "learning_rate": 9.213240333552589e-05,
206
+ "loss": 0.1074,
207
+ "step": 130
208
+ },
209
+ {
210
+ "epoch": 1.0964467005076142,
211
+ "grad_norm": 0.02569424733519554,
212
+ "learning_rate": 9.114919329468282e-05,
213
+ "loss": 0.106,
214
+ "step": 135
215
+ },
216
+ {
217
+ "epoch": 1.1370558375634519,
218
+ "grad_norm": 0.030071981251239777,
219
+ "learning_rate": 9.011401826578492e-05,
220
+ "loss": 0.1105,
221
+ "step": 140
222
+ },
223
+ {
224
+ "epoch": 1.1776649746192893,
225
+ "grad_norm": 0.02678651362657547,
226
+ "learning_rate": 8.902818551280758e-05,
227
+ "loss": 0.0967,
228
+ "step": 145
229
+ },
230
+ {
231
+ "epoch": 1.218274111675127,
232
+ "grad_norm": 0.034579597413539886,
233
+ "learning_rate": 8.789306627249985e-05,
234
+ "loss": 0.095,
235
+ "step": 150
236
+ },
237
+ {
238
+ "epoch": 1.218274111675127,
239
+ "eval_loss": 0.11852660775184631,
240
+ "eval_runtime": 576.5584,
241
+ "eval_samples_per_second": 1.734,
242
+ "eval_steps_per_second": 0.217,
243
+ "step": 150
244
+ },
245
+ {
246
+ "epoch": 1.2588832487309645,
247
+ "grad_norm": 0.03252468258142471,
248
+ "learning_rate": 8.6710094022727e-05,
249
+ "loss": 0.1047,
250
+ "step": 155
251
+ },
252
+ {
253
+ "epoch": 1.299492385786802,
254
+ "grad_norm": 0.031006837263703346,
255
+ "learning_rate": 8.548076267221256e-05,
256
+ "loss": 0.0952,
257
+ "step": 160
258
+ },
259
+ {
260
+ "epoch": 1.3401015228426396,
261
+ "grad_norm": 0.03085142932832241,
262
+ "learning_rate": 8.420662467396547e-05,
263
+ "loss": 0.1088,
264
+ "step": 165
265
+ },
266
+ {
267
+ "epoch": 1.380710659898477,
268
+ "grad_norm": 0.03295427933335304,
269
+ "learning_rate": 8.288928906477496e-05,
270
+ "loss": 0.0935,
271
+ "step": 170
272
+ },
273
+ {
274
+ "epoch": 1.4213197969543148,
275
+ "grad_norm": 0.04264140501618385,
276
+ "learning_rate": 8.15304194332491e-05,
277
+ "loss": 0.1052,
278
+ "step": 175
279
+ },
280
+ {
281
+ "epoch": 1.4619289340101522,
282
+ "grad_norm": 0.034094925969839096,
283
+ "learning_rate": 8.013173181896283e-05,
284
+ "loss": 0.1026,
285
+ "step": 180
286
+ },
287
+ {
288
+ "epoch": 1.50253807106599,
289
+ "grad_norm": 0.042117953300476074,
290
+ "learning_rate": 7.869499254536865e-05,
291
+ "loss": 0.1113,
292
+ "step": 185
293
+ },
294
+ {
295
+ "epoch": 1.5431472081218274,
296
+ "grad_norm": 0.036028943955898285,
297
+ "learning_rate": 7.722201598920673e-05,
298
+ "loss": 0.0962,
299
+ "step": 190
300
+ },
301
+ {
302
+ "epoch": 1.5837563451776648,
303
+ "grad_norm": 0.039681848138570786,
304
+ "learning_rate": 7.571466228923115e-05,
305
+ "loss": 0.1029,
306
+ "step": 195
307
+ },
308
+ {
309
+ "epoch": 1.6243654822335025,
310
+ "grad_norm": 0.03896370530128479,
311
+ "learning_rate": 7.417483499714589e-05,
312
+ "loss": 0.1017,
313
+ "step": 200
314
+ },
315
+ {
316
+ "epoch": 1.6243654822335025,
317
+ "eval_loss": 0.11510748416185379,
318
+ "eval_runtime": 578.0426,
319
+ "eval_samples_per_second": 1.73,
320
+ "eval_steps_per_second": 0.216,
321
+ "step": 200
322
+ },
323
+ {
324
+ "epoch": 1.6649746192893402,
325
+ "grad_norm": 0.04175429046154022,
326
+ "learning_rate": 7.260447867371709e-05,
327
+ "loss": 0.1042,
328
+ "step": 205
329
+ },
330
+ {
331
+ "epoch": 1.7055837563451777,
332
+ "grad_norm": 0.041212454438209534,
333
+ "learning_rate": 7.100557643309732e-05,
334
+ "loss": 0.0961,
335
+ "step": 210
336
+ },
337
+ {
338
+ "epoch": 1.7461928934010151,
339
+ "grad_norm": 0.04984848201274872,
340
+ "learning_rate": 6.938014743846285e-05,
341
+ "loss": 0.0982,
342
+ "step": 215
343
+ },
344
+ {
345
+ "epoch": 1.7868020304568528,
346
+ "grad_norm": 0.04844158887863159,
347
+ "learning_rate": 6.773024435212678e-05,
348
+ "loss": 0.1042,
349
+ "step": 220
350
+ },
351
+ {
352
+ "epoch": 1.8274111675126905,
353
+ "grad_norm": 0.04398966580629349,
354
+ "learning_rate": 6.605795074334794e-05,
355
+ "loss": 0.101,
356
+ "step": 225
357
+ },
358
+ {
359
+ "epoch": 1.868020304568528,
360
+ "grad_norm": 0.04412737116217613,
361
+ "learning_rate": 6.436537845710903e-05,
362
+ "loss": 0.1006,
363
+ "step": 230
364
+ },
365
+ {
366
+ "epoch": 1.9086294416243654,
367
+ "grad_norm": 0.04369115084409714,
368
+ "learning_rate": 6.265466494718732e-05,
369
+ "loss": 0.0883,
370
+ "step": 235
371
+ },
372
+ {
373
+ "epoch": 1.9492385786802031,
374
+ "grad_norm": 0.0569264255464077,
375
+ "learning_rate": 6.092797057688495e-05,
376
+ "loss": 0.0854,
377
+ "step": 240
378
+ },
379
+ {
380
+ "epoch": 1.9898477157360406,
381
+ "grad_norm": 0.0520426370203495,
382
+ "learning_rate": 5.918747589082853e-05,
383
+ "loss": 0.0931,
384
+ "step": 245
385
+ },
386
+ {
387
+ "epoch": 2.030456852791878,
388
+ "grad_norm": 0.04745051637291908,
389
+ "learning_rate": 5.7435378861282585e-05,
390
+ "loss": 0.0997,
391
+ "step": 250
392
+ },
393
+ {
394
+ "epoch": 2.030456852791878,
395
+ "eval_loss": 0.11357399076223373,
396
+ "eval_runtime": 578.1803,
397
+ "eval_samples_per_second": 1.73,
398
+ "eval_steps_per_second": 0.216,
399
+ "step": 250
400
+ },
401
+ {
402
+ "epoch": 2.0710659898477157,
403
+ "grad_norm": 0.04727412760257721,
404
+ "learning_rate": 5.567389211245485e-05,
405
+ "loss": 0.0869,
406
+ "step": 255
407
+ },
408
+ {
409
+ "epoch": 2.1116751269035534,
410
+ "grad_norm": 0.05797808617353439,
411
+ "learning_rate": 5.390524012629824e-05,
412
+ "loss": 0.0967,
413
+ "step": 260
414
+ },
415
+ {
416
+ "epoch": 2.152284263959391,
417
+ "grad_norm": 0.05673275515437126,
418
+ "learning_rate": 5.2131656433338506e-05,
419
+ "loss": 0.0915,
420
+ "step": 265
421
+ },
422
+ {
423
+ "epoch": 2.1928934010152283,
424
+ "grad_norm": 0.06083540990948677,
425
+ "learning_rate": 5.035538079207488e-05,
426
+ "loss": 0.0872,
427
+ "step": 270
428
+ },
429
+ {
430
+ "epoch": 2.233502538071066,
431
+ "grad_norm": 0.05403359234333038,
432
+ "learning_rate": 4.857865636051585e-05,
433
+ "loss": 0.0891,
434
+ "step": 275
435
+ },
436
+ {
437
+ "epoch": 2.2741116751269037,
438
+ "grad_norm": 0.06568802893161774,
439
+ "learning_rate": 4.6803726863421725e-05,
440
+ "loss": 0.0879,
441
+ "step": 280
442
+ },
443
+ {
444
+ "epoch": 2.314720812182741,
445
+ "grad_norm": 0.05751260742545128,
446
+ "learning_rate": 4.503283375883165e-05,
447
+ "loss": 0.0868,
448
+ "step": 285
449
+ },
450
+ {
451
+ "epoch": 2.3553299492385786,
452
+ "grad_norm": 0.05319669097661972,
453
+ "learning_rate": 4.326821340745304e-05,
454
+ "loss": 0.0807,
455
+ "step": 290
456
+ },
457
+ {
458
+ "epoch": 2.3959390862944163,
459
+ "grad_norm": 0.06429895013570786,
460
+ "learning_rate": 4.151209424848819e-05,
461
+ "loss": 0.0842,
462
+ "step": 295
463
+ },
464
+ {
465
+ "epoch": 2.436548223350254,
466
+ "grad_norm": 0.05513699725270271,
467
+ "learning_rate": 3.976669398546451e-05,
468
+ "loss": 0.0891,
469
+ "step": 300
470
+ },
471
+ {
472
+ "epoch": 2.436548223350254,
473
+ "eval_loss": 0.1108972504734993,
474
+ "eval_runtime": 577.9422,
475
+ "eval_samples_per_second": 1.73,
476
+ "eval_steps_per_second": 0.216,
477
+ "step": 300
478
+ },
479
+ {
480
+ "epoch": 2.4771573604060912,
481
+ "grad_norm": 0.059542689472436905,
482
+ "learning_rate": 3.803421678562213e-05,
483
+ "loss": 0.0911,
484
+ "step": 305
485
+ },
486
+ {
487
+ "epoch": 2.517766497461929,
488
+ "grad_norm": 0.054820574820041656,
489
+ "learning_rate": 3.631685049639586e-05,
490
+ "loss": 0.0815,
491
+ "step": 310
492
+ },
493
+ {
494
+ "epoch": 2.5583756345177666,
495
+ "grad_norm": 0.060525231063365936,
496
+ "learning_rate": 3.461676388250651e-05,
497
+ "loss": 0.083,
498
+ "step": 315
499
+ },
500
+ {
501
+ "epoch": 2.598984771573604,
502
+ "grad_norm": 0.07101233303546906,
503
+ "learning_rate": 3.293610388715048e-05,
504
+ "loss": 0.0853,
505
+ "step": 320
506
+ },
507
+ {
508
+ "epoch": 2.6395939086294415,
509
+ "grad_norm": 0.0710340216755867,
510
+ "learning_rate": 3.127699292074683e-05,
511
+ "loss": 0.088,
512
+ "step": 325
513
+ },
514
+ {
515
+ "epoch": 2.6802030456852792,
516
+ "grad_norm": 0.0659579485654831,
517
+ "learning_rate": 2.964152618066508e-05,
518
+ "loss": 0.0775,
519
+ "step": 330
520
+ },
521
+ {
522
+ "epoch": 2.720812182741117,
523
+ "grad_norm": 0.07411176711320877,
524
+ "learning_rate": 2.8031769005319147e-05,
525
+ "loss": 0.0808,
526
+ "step": 335
527
+ },
528
+ {
529
+ "epoch": 2.761421319796954,
530
+ "grad_norm": 0.06739082932472229,
531
+ "learning_rate": 2.6449754265968264e-05,
532
+ "loss": 0.0842,
533
+ "step": 340
534
+ },
535
+ {
536
+ "epoch": 2.802030456852792,
537
+ "grad_norm": 0.0516592413187027,
538
+ "learning_rate": 2.4897479799518796e-05,
539
+ "loss": 0.0806,
540
+ "step": 345
541
+ },
542
+ {
543
+ "epoch": 2.8426395939086295,
544
+ "grad_norm": 0.06238855794072151,
545
+ "learning_rate": 2.3376905885569182e-05,
546
+ "loss": 0.0794,
547
+ "step": 350
548
+ },
549
+ {
550
+ "epoch": 2.8426395939086295,
551
+ "eval_loss": 0.11036123335361481,
552
+ "eval_runtime": 577.777,
553
+ "eval_samples_per_second": 1.731,
554
+ "eval_steps_per_second": 0.216,
555
+ "step": 350
556
+ },
557
+ {
558
+ "epoch": 2.8832487309644668,
559
+ "grad_norm": 0.06635326892137527,
560
+ "learning_rate": 2.1889952770883643e-05,
561
+ "loss": 0.0921,
562
+ "step": 355
563
+ },
564
+ {
565
+ "epoch": 2.9238578680203045,
566
+ "grad_norm": 0.06318895518779755,
567
+ "learning_rate": 2.043849824442124e-05,
568
+ "loss": 0.0785,
569
+ "step": 360
570
+ },
571
+ {
572
+ "epoch": 2.964467005076142,
573
+ "grad_norm": 0.09163162112236023,
574
+ "learning_rate": 1.9024375265982384e-05,
575
+ "loss": 0.0868,
576
+ "step": 365
577
+ },
578
+ {
579
+ "epoch": 3.00507614213198,
580
+ "grad_norm": 0.07665061205625534,
581
+ "learning_rate": 1.764936965146773e-05,
582
+ "loss": 0.0842,
583
+ "step": 370
584
+ },
585
+ {
586
+ "epoch": 3.045685279187817,
587
+ "grad_norm": 0.06518320739269257,
588
+ "learning_rate": 1.631521781767214e-05,
589
+ "loss": 0.0819,
590
+ "step": 375
591
+ },
592
+ {
593
+ "epoch": 3.0862944162436547,
594
+ "grad_norm": 0.06743030995130539,
595
+ "learning_rate": 1.502360458946232e-05,
596
+ "loss": 0.0729,
597
+ "step": 380
598
+ },
599
+ {
600
+ "epoch": 3.1269035532994924,
601
+ "grad_norm": 0.07401350885629654,
602
+ "learning_rate": 1.3776161072106702e-05,
603
+ "loss": 0.0903,
604
+ "step": 385
605
+ },
606
+ {
607
+ "epoch": 3.16751269035533,
608
+ "grad_norm": 0.07385122030973434,
609
+ "learning_rate": 1.257446259144494e-05,
610
+ "loss": 0.0867,
611
+ "step": 390
612
+ },
613
+ {
614
+ "epoch": 3.2081218274111674,
615
+ "grad_norm": 0.06651349365711212,
616
+ "learning_rate": 1.1420026704498077e-05,
617
+ "loss": 0.0815,
618
+ "step": 395
619
+ },
620
+ {
621
+ "epoch": 3.248730964467005,
622
+ "grad_norm": 0.06250081211328506,
623
+ "learning_rate": 1.031431128303153e-05,
624
+ "loss": 0.0702,
625
+ "step": 400
626
+ },
627
+ {
628
+ "epoch": 3.248730964467005,
629
+ "eval_loss": 0.11043216288089752,
630
+ "eval_runtime": 577.4688,
631
+ "eval_samples_per_second": 1.732,
632
+ "eval_steps_per_second": 0.216,
633
+ "step": 400
634
+ },
635
+ {
636
+ "epoch": 3.2893401015228427,
637
+ "grad_norm": 0.0696023628115654,
638
+ "learning_rate": 9.258712672491415e-06,
639
+ "loss": 0.0826,
640
+ "step": 405
641
+ },
642
+ {
643
+ "epoch": 3.3299492385786804,
644
+ "grad_norm": 0.06600358337163925,
645
+ "learning_rate": 8.254563928638893e-06,
646
+ "loss": 0.0775,
647
+ "step": 410
648
+ },
649
+ {
650
+ "epoch": 3.3705583756345177,
651
+ "grad_norm": 0.06653475761413574,
652
+ "learning_rate": 7.3031331341093915e-06,
653
+ "loss": 0.0875,
654
+ "step": 415
655
+ },
656
+ {
657
+ "epoch": 3.4111675126903553,
658
+ "grad_norm": 0.05932833254337311,
659
+ "learning_rate": 6.405621797022848e-06,
660
+ "loss": 0.0793,
661
+ "step": 420
662
+ },
663
+ {
664
+ "epoch": 3.451776649746193,
665
+ "grad_norm": 0.06918617337942123,
666
+ "learning_rate": 5.563163333667099e-06,
667
+ "loss": 0.0759,
668
+ "step": 425
669
+ },
670
+ {
671
+ "epoch": 3.4923857868020303,
672
+ "grad_norm": 0.07110767066478729,
673
+ "learning_rate": 4.776821637170526e-06,
674
+ "loss": 0.0821,
675
+ "step": 430
676
+ },
677
+ {
678
+ "epoch": 3.532994923857868,
679
+ "grad_norm": 0.061374176293611526,
680
+ "learning_rate": 4.047589733971646e-06,
681
+ "loss": 0.0778,
682
+ "step": 435
683
+ },
684
+ {
685
+ "epoch": 3.5736040609137056,
686
+ "grad_norm": 0.06456020474433899,
687
+ "learning_rate": 3.376388529782215e-06,
688
+ "loss": 0.0741,
689
+ "step": 440
690
+ },
691
+ {
692
+ "epoch": 3.6142131979695433,
693
+ "grad_norm": 0.07185477763414383,
694
+ "learning_rate": 2.7640656466274782e-06,
695
+ "loss": 0.0753,
696
+ "step": 445
697
+ },
698
+ {
699
+ "epoch": 3.6548223350253806,
700
+ "grad_norm": 0.06696159392595291,
701
+ "learning_rate": 2.2113943524323167e-06,
702
+ "loss": 0.0775,
703
+ "step": 450
704
+ },
705
+ {
706
+ "epoch": 3.6548223350253806,
707
+ "eval_loss": 0.10999426990747452,
708
+ "eval_runtime": 577.8937,
709
+ "eval_samples_per_second": 1.73,
710
+ "eval_steps_per_second": 0.216,
711
+ "step": 450
712
+ }
713
+ ],
714
+ "logging_steps": 5,
715
+ "max_steps": 492,
716
+ "num_input_tokens_seen": 0,
717
+ "num_train_epochs": 4,
718
+ "save_steps": 50,
719
+ "stateful_callbacks": {
720
+ "TrainerControl": {
721
+ "args": {
722
+ "should_epoch_stop": false,
723
+ "should_evaluate": false,
724
+ "should_log": false,
725
+ "should_save": true,
726
+ "should_training_stop": false
727
+ },
728
+ "attributes": {}
729
+ }
730
+ },
731
+ "total_flos": 2.8705510622704435e+18,
732
+ "train_batch_size": 8,
733
+ "trial_name": null,
734
+ "trial_params": null
735
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ee57d7cfd7daf37bdfcd1cddb76d842fe921bdbd1ff82ec5212adc9e1dcb1a3
3
+ size 5368