|
import os |
|
import torch |
|
from llama_cpp import Llama |
|
from typing import Any, List, Dict |
|
|
|
|
|
class FixedVocabLogitsProcessor: |
|
""" |
|
A custom logits processor for GGUF-compatible models. |
|
""" |
|
|
|
def __init__(self, allowed_ids: set[int], fill_value=float('-inf')): |
|
self.allowed_ids = allowed_ids |
|
self.fill_value = fill_value |
|
|
|
def apply(self, logits: torch.FloatTensor): |
|
""" |
|
Modify logits to restrict to allowed token IDs. |
|
""" |
|
for token_id in range(len(logits)): |
|
if token_id not in self.allowed_ids: |
|
logits[token_id] = self.fill_value |
|
return logits |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
""" |
|
Initialize the GGUF model handler. |
|
Args: |
|
path (str): Path to the GGUF file. |
|
""" |
|
|
|
self.model = Llama(model_path="/repository/Llama-3.2-1B-Instruct-Q4_K_L.gguf") |
|
self.tokenizer = self.model.tokenizer |
|
|
|
def __call__(self, data: Any) -> List[Dict[str, str]]: |
|
""" |
|
Handle the request, performing inference with a restricted vocabulary. |
|
Args: |
|
data (Any): Input data. |
|
Returns: |
|
List[Dict[str, str]]: Generated output. |
|
""" |
|
|
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", {}) |
|
vocab_list = data.pop("vocab_list", None) |
|
|
|
if not vocab_list: |
|
raise ValueError("You must provide a 'vocab_list' to define allowed tokens.") |
|
|
|
|
|
allowed_ids = set() |
|
for word in vocab_list: |
|
for tid in self.model.tokenize(word): |
|
allowed_ids.add(tid) |
|
|
|
|
|
input_ids = self.model.tokenize(inputs) |
|
|
|
|
|
output_ids = self.model.generate( |
|
input_ids, |
|
max_tokens=parameters.get("max_length", 30), |
|
logits_processor=lambda logits: FixedVocabLogitsProcessor(allowed_ids).apply(logits) |
|
) |
|
|
|
|
|
generated_text = self.model.detokenize(output_ids) |
|
|
|
return [{"generated_text": generated_text}] |
|
|