phi-2-ft / phi2-fine-tuning.py
tatvamasi's picture
Upload 5 files
3015143 verified
# pip install torch peft==0.4.0 bitsandbytes transformers==4.31.0 trl==0.4.7 accelerate einops
# pip install tqdm scipy
import os
from dataclasses import dataclass, field
from typing import Optional
import torch
from datasets import load_dataset
from datasets import load_from_disk
from peft import LoraConfig, prepare_model_for_kbit_training
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
HfArgumentParser,
AutoTokenizer,
TrainingArguments,
)
from tqdm.notebook import tqdm
from transformers import pipeline
from trl import SFTTrainer
import pandas as pd
print("Is CUDA enabled?",torch.cuda.is_available())
# dataset = load_from_disk("C:\\Users\\PROMETHEUS\\Desktop\\dataset\\CommonFAQ.csv")
training_dataset = load_dataset("csv", data_files="formatted_qna_lite.csv", split="train")
print(training_dataset)
base_model = "microsoft/phi-2"
new_model = "phi-2-ft-medq"
tokenizer = AutoTokenizer.from_pretrained(base_model, use_fast=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=False,
)
model = AutoModelForCausalLM.from_pretrained(
base_model,
quantization_config=bnb_config,
# use_flash_attention_2=True, # Phi does not support yet.
trust_remote_code=True,
flash_attn=True,
flash_rotary=True,
fused_dense=True,
low_cpu_mem_usage=True,
device_map={"": 0},
revision="refs/pr/23",
)
model.config.use_cache = False
model.config.pretraining_tp = 1
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True)
training_arguments = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=2,
gradient_accumulation_steps=32,
evaluation_strategy="steps",
eval_steps=2000,
logging_steps=15,
optim="paged_adamw_8bit",
learning_rate=2e-4,
lr_scheduler_type="cosine",
save_steps=2000,
warmup_ratio=0.05,
weight_decay=0.01,
max_steps=-1
)
peft_config = LoraConfig(
r=32,
lora_alpha=64,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
target_modules=["Wqkv", "fc1", "fc2"] # ["Wqkv", "out_proj", "fc1", "fc2" ], - 41M params
# modules_to_save=["embed_tokens","lm_head"]
)
trainer = SFTTrainer(
model=model,
train_dataset=training_dataset,
peft_config=peft_config,
dataset_text_field="Text",
max_seq_length=900,
tokenizer=tokenizer,
args=training_arguments,
)
trainer.train()
prompt = "How old was Pascal when he lost his mother?"
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=250)
while prompt != 'EXIT':
result = pipe(f"[INST] {prompt} [/INST]")
print(result[0]['generated_text'])
prompt = input("Ask the next question .....\n")