--- datasets: - tattabio/OMG license: apache-2.0 --- # gLM2_150M gLM2 is a mixed-modality genomic language model, trained on the [`OMG Dataset`](https://huggingface.co./datasets/tattabio/OMG). The model encodes a genomic scaffold with both both amino-acid and DNA tokens. gLM2 is trained at two scales: 150M and 650M parameters (available at [`tattabio/gLM2_650M`](https://huggingface.co./tattabio/gLM2_650M)). See [https://github.com/TattaBio/gLM2](https://github.com/TattaBio/gLM2) for inference scripts. ### Model Description gLM2 is a transformer encoder trained with the masked language modeling objective. It encodes a genomic contig as a sequence of protein coding sequences (CDS) and DNA inter-genic sequences (IGS). CDS elements are tokenized using per-amino acid tokens, and IGS elements are tokenized using per-nucleotide tokens. - To encode the genomic strand, we prepended each genomic element with a special token, either `<+>` or `<->` to indicate the positive and negative strands. - To avoid collision between amino acid and nucleotide tokens, the tokenizer expects all amino acids to be uppercase, and all nucleotides to be lowercase. UPDATE(09/2024): We updated the model with longer context length (4096 tokens vs. 2048 tokens) and per-nucleotide IGS tokenization instead of BPE. ## Getting Started ```python import torch from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained('tattabio/gLM2_150M', torch_dtype=torch.bfloat16, trust_remote_code=True).cuda() tokenizer = AutoTokenizer.from_pretrained('tattabio/gLM2_150M', trust_remote_code=True) # A contig with two proteins and an inter-genic sequence. # NOTE: Nucleotides should always be lowercase, and prepended with `<+>`. sequence = "<+>MALTKVEKRNRIKRRVRGKISGTQASPRLSVYKSNK<+>aatttaaggaa<->MLGIDNIERVKPGGLELVDRLVAVNRVTKVTKGGRAFGFSAIVVVGNED" # Tokenize the sequence. encodings = tokenizer([sequence], return_tensors='pt') # Extract embeddings. with torch.no_grad(): embeddings = model(encodings.input_ids.cuda(), output_hidden_states=True).last_hidden_state ``` ### Training Data gLM2 is trained on the [`OMG`](https://huggingface.co./datasets/tattabio/OMG) dataset. To improve the dataset balance and remove near-duplicate examples, the data is tokenized and pruned by applying Semantic Deduplication [SemDedup](https://arxiv.org/abs/2303.09540). We use an embedding distance threshold of 2e-3, resulting in 49% of the dataset being pruned. ## Training Details - Pretraining tokens: 315B - Context length: 4096 - Masking rate: 30% - Learning rate: 1e-3 - Optimizer: AdamW (betas = (0.9, 0.95)) - Mixed precision training: bfloat16 - Weight decay: 0.1 ## Citation **BioRxiv:** [https://www.biorxiv.org/content/10.1101/2024.08.14.607850](https://www.biorxiv.org/content/10.1101/2024.08.14.607850) **BibTeX:** ```@article {Cornman2024.08.14.607850, author = {Cornman, Andre and West-Roberts, Jacob and Camargo, Antonio Pedro and Roux, Simon and Beracochea, Martin and Mirdita, Milot and Ovchinnikov, Sergey and Hwang, Yunha}, title = {The OMG dataset: An Open MetaGenomic corpus for mixed-modality genomic language modeling}, elocation-id = {2024.08.14.607850}, year = {2024}, doi = {10.1101/2024.08.14.607850}, publisher = {Cold Spring Harbor Laboratory}, URL = {https://www.biorxiv.org/content/early/2024/08/17/2024.08.14.607850}, eprint = {https://www.biorxiv.org/content/early/2024/08/17/2024.08.14.607850.full.pdf}, journal = {bioRxiv} }