--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-en-US results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.3435655253837072 --- # whisper-tiny-en-US This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6286 - Wer Ortho: 0.3430 - Wer: 0.3436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 10 - training_steps: 225 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 3.2798 | 0.25 | 14 | 0.9783 | 0.7218 | 0.6889 | | 0.6283 | 0.5 | 28 | 0.5667 | 0.4479 | 0.4427 | | 0.5574 | 0.75 | 42 | 0.5307 | 0.4812 | 0.4858 | | 0.501 | 1.0 | 56 | 0.5130 | 0.3800 | 0.3813 | | 0.2296 | 1.25 | 70 | 0.5057 | 0.3479 | 0.3436 | | 0.2296 | 1.5 | 84 | 0.5515 | 0.3572 | 0.3512 | | 0.2207 | 1.75 | 98 | 0.5356 | 0.3578 | 0.3530 | | 0.1928 | 2.0 | 112 | 0.5288 | 0.3226 | 0.3200 | | 0.0795 | 2.25 | 126 | 0.5532 | 0.3257 | 0.3259 | | 0.0651 | 2.5 | 140 | 0.5833 | 0.3504 | 0.3512 | | 0.0719 | 2.75 | 154 | 0.5931 | 0.3467 | 0.3501 | | 0.0722 | 3.0 | 168 | 0.5994 | 0.3498 | 0.3477 | | 0.0231 | 3.25 | 182 | 0.6030 | 0.3270 | 0.3264 | | 0.0433 | 3.5 | 196 | 0.6059 | 0.3214 | 0.3200 | | 0.0663 | 3.75 | 210 | 0.6262 | 0.3646 | 0.3648 | | 0.0396 | 4.0 | 224 | 0.6286 | 0.3430 | 0.3436 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3