mtasic85 commited on
Commit
7bbe823
·
1 Parent(s): 36f3948
Files changed (1) hide show
  1. scripts/tokenizer_datasets.py +28 -9
scripts/tokenizer_datasets.py CHANGED
@@ -2,19 +2,38 @@ tokenizer_datasets = [
2
  #
3
  # multilingual
4
  #
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  # 3.8 GB, 19,454,996
6
  *[
7
- {'path': 'sentence-transformers/parallel-sentences-wikimatrix', 'data_dir': 'all', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['non_english']}
8
  for i in range(0, 100, 5)
9
  ],
10
  # 3.17 GB, 2,226,907
11
  *[
12
- {'path': 'ontocord/fineweb-permissive-multilingual-2m', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['text']}
13
  for i in range(0, 100, 5)
14
  ],
15
  # 1.64 GB, 1,001,000
16
  *[
17
- {'path': 'distily/c4_multilingual_1M', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['text']}
18
  for i in range(0, 100, 5)
19
  ],
20
 
@@ -23,11 +42,11 @@ tokenizer_datasets = [
23
  #
24
  # 1.44 GB, 63,357
25
  *[
26
- {'path': 'neuralwork/arxiver', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['abstract']}
27
  for i in range(0, 100, 5)
28
  ],
29
  *[
30
- {'path': 'neuralwork/arxiver', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['markdown']}
31
  for i in range(0, 100, 5)
32
  ],
33
 
@@ -36,7 +55,7 @@ tokenizer_datasets = [
36
  #
37
  # 7.81 GB, ~2,804,025
38
  *[
39
- {'path': 'rombodawg/code_bagel_hermes-2.5', 'split': f'train[{i}%:{i + 5}%]', 'format': '{input} {output}'}
40
  for i in range(0, 100, 5)
41
  ],
42
 
@@ -45,9 +64,9 @@ tokenizer_datasets = [
45
  #
46
  # 3.18 GB, 1,010,500 - paper says that extracted is 6GB
47
  *[
48
- {'path': 'JeanKaddour/minipile', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['text']}
49
  for i in range(0, 100, 5)
50
  ],
51
- {'path': 'JeanKaddour/minipile', 'split': 'validation', 'format': lambda n: n['text']},
52
- {'path': 'JeanKaddour/minipile', 'split': 'test', 'format': lambda n: n['text']},
53
  ]
 
2
  #
3
  # multilingual
4
  #
5
+ # 193 MB, 1,141,967
6
+ *[
7
+ {'kind': 'base', 'path': 'xu-song/cc100-samples', 'name': name, 'split': 'train', 'format': lambda n: n['text']}
8
+ for name in [
9
+ 'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br',
10
+ 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es',
11
+ 'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl',
12
+ 'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'hr', 'ht', 'hu',
13
+ 'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km',
14
+ 'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt',
15
+ 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw',
16
+ 'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt',
17
+ 'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl',
18
+ 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom',
19
+ 'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur',
20
+ 'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo',
21
+ 'zh-Hans', 'zh-Hant', 'zu',
22
+ ]
23
+ ],
24
  # 3.8 GB, 19,454,996
25
  *[
26
+ {'kind': 'base', 'path': 'sentence-transformers/parallel-sentences-wikimatrix', 'data_dir': 'all', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['non_english']}
27
  for i in range(0, 100, 5)
28
  ],
29
  # 3.17 GB, 2,226,907
30
  *[
31
+ {'kind': 'base', 'path': 'ontocord/fineweb-permissive-multilingual-2m', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['text']}
32
  for i in range(0, 100, 5)
33
  ],
34
  # 1.64 GB, 1,001,000
35
  *[
36
+ {'kind': 'base', 'path': 'distily/c4_multilingual_1M', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['text']}
37
  for i in range(0, 100, 5)
38
  ],
39
 
 
42
  #
43
  # 1.44 GB, 63,357
44
  *[
45
+ {'kind': 'base', 'path': 'neuralwork/arxiver', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['abstract']}
46
  for i in range(0, 100, 5)
47
  ],
48
  *[
49
+ {'kind': 'base', 'path': 'neuralwork/arxiver', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['markdown']}
50
  for i in range(0, 100, 5)
51
  ],
52
 
 
55
  #
56
  # 7.81 GB, ~2,804,025
57
  *[
58
+ {'kind': 'base', 'path': 'rombodawg/code_bagel_hermes-2.5', 'split': f'train[{i}%:{i + 5}%]', 'format': '{input} {output}'}
59
  for i in range(0, 100, 5)
60
  ],
61
 
 
64
  #
65
  # 3.18 GB, 1,010,500 - paper says that extracted is 6GB
66
  *[
67
+ {'kind': 'base', 'path': 'JeanKaddour/minipile', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['text']}
68
  for i in range(0, 100, 5)
69
  ],
70
+ {'kind': 'base', 'path': 'JeanKaddour/minipile', 'split': 'validation', 'format': lambda n: n['text']},
71
+ {'kind': 'base', 'path': 'JeanKaddour/minipile', 'split': 'test', 'format': lambda n: n['text']},
72
  ]