tokenizer
Browse files
scripts/tokenizer_datasets.py
CHANGED
@@ -2,19 +2,38 @@ tokenizer_datasets = [
|
|
2 |
#
|
3 |
# multilingual
|
4 |
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
# 3.8 GB, 19,454,996
|
6 |
*[
|
7 |
-
{'path': 'sentence-transformers/parallel-sentences-wikimatrix', 'data_dir': 'all', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['non_english']}
|
8 |
for i in range(0, 100, 5)
|
9 |
],
|
10 |
# 3.17 GB, 2,226,907
|
11 |
*[
|
12 |
-
{'path': 'ontocord/fineweb-permissive-multilingual-2m', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['text']}
|
13 |
for i in range(0, 100, 5)
|
14 |
],
|
15 |
# 1.64 GB, 1,001,000
|
16 |
*[
|
17 |
-
{'path': 'distily/c4_multilingual_1M', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['text']}
|
18 |
for i in range(0, 100, 5)
|
19 |
],
|
20 |
|
@@ -23,11 +42,11 @@ tokenizer_datasets = [
|
|
23 |
#
|
24 |
# 1.44 GB, 63,357
|
25 |
*[
|
26 |
-
{'path': 'neuralwork/arxiver', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['abstract']}
|
27 |
for i in range(0, 100, 5)
|
28 |
],
|
29 |
*[
|
30 |
-
{'path': 'neuralwork/arxiver', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['markdown']}
|
31 |
for i in range(0, 100, 5)
|
32 |
],
|
33 |
|
@@ -36,7 +55,7 @@ tokenizer_datasets = [
|
|
36 |
#
|
37 |
# 7.81 GB, ~2,804,025
|
38 |
*[
|
39 |
-
{'path': 'rombodawg/code_bagel_hermes-2.5', 'split': f'train[{i}%:{i + 5}%]', 'format': '{input} {output}'}
|
40 |
for i in range(0, 100, 5)
|
41 |
],
|
42 |
|
@@ -45,9 +64,9 @@ tokenizer_datasets = [
|
|
45 |
#
|
46 |
# 3.18 GB, 1,010,500 - paper says that extracted is 6GB
|
47 |
*[
|
48 |
-
{'path': 'JeanKaddour/minipile', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['text']}
|
49 |
for i in range(0, 100, 5)
|
50 |
],
|
51 |
-
{'path': 'JeanKaddour/minipile', 'split': 'validation', 'format': lambda n: n['text']},
|
52 |
-
{'path': 'JeanKaddour/minipile', 'split': 'test', 'format': lambda n: n['text']},
|
53 |
]
|
|
|
2 |
#
|
3 |
# multilingual
|
4 |
#
|
5 |
+
# 193 MB, 1,141,967
|
6 |
+
*[
|
7 |
+
{'kind': 'base', 'path': 'xu-song/cc100-samples', 'name': name, 'split': 'train', 'format': lambda n: n['text']}
|
8 |
+
for name in [
|
9 |
+
'am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br',
|
10 |
+
'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es',
|
11 |
+
'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl',
|
12 |
+
'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'hr', 'ht', 'hu',
|
13 |
+
'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km',
|
14 |
+
'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt',
|
15 |
+
'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw',
|
16 |
+
'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt',
|
17 |
+
'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl',
|
18 |
+
'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom',
|
19 |
+
'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur',
|
20 |
+
'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo',
|
21 |
+
'zh-Hans', 'zh-Hant', 'zu',
|
22 |
+
]
|
23 |
+
],
|
24 |
# 3.8 GB, 19,454,996
|
25 |
*[
|
26 |
+
{'kind': 'base', 'path': 'sentence-transformers/parallel-sentences-wikimatrix', 'data_dir': 'all', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['non_english']}
|
27 |
for i in range(0, 100, 5)
|
28 |
],
|
29 |
# 3.17 GB, 2,226,907
|
30 |
*[
|
31 |
+
{'kind': 'base', 'path': 'ontocord/fineweb-permissive-multilingual-2m', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['text']}
|
32 |
for i in range(0, 100, 5)
|
33 |
],
|
34 |
# 1.64 GB, 1,001,000
|
35 |
*[
|
36 |
+
{'kind': 'base', 'path': 'distily/c4_multilingual_1M', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['text']}
|
37 |
for i in range(0, 100, 5)
|
38 |
],
|
39 |
|
|
|
42 |
#
|
43 |
# 1.44 GB, 63,357
|
44 |
*[
|
45 |
+
{'kind': 'base', 'path': 'neuralwork/arxiver', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['abstract']}
|
46 |
for i in range(0, 100, 5)
|
47 |
],
|
48 |
*[
|
49 |
+
{'kind': 'base', 'path': 'neuralwork/arxiver', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['markdown']}
|
50 |
for i in range(0, 100, 5)
|
51 |
],
|
52 |
|
|
|
55 |
#
|
56 |
# 7.81 GB, ~2,804,025
|
57 |
*[
|
58 |
+
{'kind': 'base', 'path': 'rombodawg/code_bagel_hermes-2.5', 'split': f'train[{i}%:{i + 5}%]', 'format': '{input} {output}'}
|
59 |
for i in range(0, 100, 5)
|
60 |
],
|
61 |
|
|
|
64 |
#
|
65 |
# 3.18 GB, 1,010,500 - paper says that extracted is 6GB
|
66 |
*[
|
67 |
+
{'kind': 'base', 'path': 'JeanKaddour/minipile', 'split': f'train[{i}%:{i + 5}%]', 'format': lambda n: n['text']}
|
68 |
for i in range(0, 100, 5)
|
69 |
],
|
70 |
+
{'kind': 'base', 'path': 'JeanKaddour/minipile', 'split': 'validation', 'format': lambda n: n['text']},
|
71 |
+
{'kind': 'base', 'path': 'JeanKaddour/minipile', 'split': 'test', 'format': lambda n: n['text']},
|
72 |
]
|