from functools import partial from litgpt.tokenizer import Tokenizer from litdata import optimize, TokensLoader, StreamingDataset from transformers import AutoTokenizer from utils import tokenize_text_fn from pretrain_datasets import pretrain_datasets # # optimize datasets # # for i, (block_size, subchunk_size) in enumerate([(4097, 4000), (8193, 2000)]): for i, (block_size, subchunk_size) in enumerate([(4097, 4000)]): chunk_size = block_size * subchunk_size output_dir = f'../pretrain-data-{i}-{block_size}-{chunk_size}' outputs = optimize( fn=partial( tokenize_text_fn, hf_tokenizer=AutoTokenizer.from_pretrained('..', trust_remote_code=True, use_fast=True), tokenizer=Tokenizer('..'), ), inputs=pretrain_datasets, output_dir=output_dir, chunk_size=chunk_size, # Number of tokens to store by chunks. This is roughly 64MB of tokens per chunk. num_workers=32, reorder_files=False, ## This is important to inform LitData that we are encoding contiguous 1D array (tokens). ## LitData skips storing metadata for each sample e.g all the tokens are concatenated to form one large tensor. # item_loader=TokensLoader(block_size=block_size), ) # # total number of chunks in datasets # # for i, (block_size, subchunk_size) in enumerate([(4097, 4000), (8193, 2000)]): for i, (block_size, subchunk_size) in enumerate([(4097, 4000)]): chunk_size = block_size * subchunk_size input_dir = f'../pretrain-data-{i}-{block_size}-{chunk_size}' dataset = StreamingDataset( input_dir=input_dir, item_loader=TokensLoader(block_size=block_size), ) print(f'{i=}, {block_size=}, {chunk_size=}, {len(dataset)=}, {len(dataset) * block_size=}')