File size: 3,455 Bytes
d24d917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: fine-tuned-bart-20-epochs
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine-tuned-bart-20-epochs

This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8098
- Rouge1: 0.3246
- Rouge2: 0.1287
- Rougel: 0.2921
- Rougelsum: 0.2912
- Gen Len: 14.96

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 301  | 0.7895          | 0.2498 | 0.0834 | 0.2162 | 0.2159    | 14.58   |
| 1.8122        | 2.0   | 602  | 0.7331          | 0.2226 | 0.0794 | 0.1943 | 0.1931    | 13.51   |
| 1.8122        | 3.0   | 903  | 0.7235          | 0.2935 | 0.1013 | 0.2652 | 0.2647    | 14.69   |
| 0.6848        | 4.0   | 1204 | 0.7225          | 0.322  | 0.1245 | 0.2867 | 0.2857    | 13.92   |
| 0.5826        | 5.0   | 1505 | 0.7238          | 0.322  | 0.1149 | 0.2863 | 0.2854    | 14.81   |
| 0.5826        | 6.0   | 1806 | 0.7204          | 0.3255 | 0.1212 | 0.2977 | 0.2963    | 14.98   |
| 0.5013        | 7.0   | 2107 | 0.7377          | 0.3061 | 0.1104 | 0.2784 | 0.2767    | 14.84   |
| 0.5013        | 8.0   | 2408 | 0.7396          | 0.3092 | 0.1227 | 0.275  | 0.2741    | 14.17   |
| 0.4384        | 9.0   | 2709 | 0.7413          | 0.3224 | 0.1271 | 0.2935 | 0.2928    | 14.44   |
| 0.3952        | 10.0  | 3010 | 0.7458          | 0.3288 | 0.1302 | 0.2925 | 0.2925    | 15.09   |
| 0.3952        | 11.0  | 3311 | 0.7615          | 0.3496 | 0.139  | 0.3139 | 0.3137    | 15.13   |
| 0.3626        | 12.0  | 3612 | 0.7733          | 0.3311 | 0.1264 | 0.3057 | 0.3049    | 14.84   |
| 0.3626        | 13.0  | 3913 | 0.7779          | 0.3184 | 0.1226 | 0.286  | 0.2857    | 15.02   |
| 0.3254        | 14.0  | 4214 | 0.7854          | 0.3258 | 0.1199 | 0.2911 | 0.2915    | 14.89   |
| 0.2983        | 15.0  | 4515 | 0.7863          | 0.3346 | 0.1189 | 0.3027 | 0.3009    | 14.93   |
| 0.2983        | 16.0  | 4816 | 0.7979          | 0.3201 | 0.117  | 0.2857 | 0.2843    | 15.05   |
| 0.2807        | 17.0  | 5117 | 0.8037          | 0.3223 | 0.1216 | 0.291  | 0.2899    | 15.1    |
| 0.2807        | 18.0  | 5418 | 0.8048          | 0.3313 | 0.1261 | 0.3003 | 0.2996    | 15.1    |
| 0.2653        | 19.0  | 5719 | 0.8114          | 0.3285 | 0.1298 | 0.297  | 0.2963    | 15.01   |
| 0.2562        | 20.0  | 6020 | 0.8098          | 0.3246 | 0.1287 | 0.2921 | 0.2912    | 14.96   |


### Framework versions

- Transformers 4.36.2
- Pytorch 1.12.1+cu113
- Datasets 2.15.0
- Tokenizers 0.15.0