File size: 1,362 Bytes
b56232d cdb748d b56232d cdb748d 5c916f2 b56232d cdb748d b56232d cdb748d b56232d 5c916f2 eb3597e 5c916f2 eb3597e b56232d cdb748d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
---
base_model: llm-jp/llm-jp-3-13b
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: cc-by-nc-sa-4.0
language:
- jp
Training Dataset: Ichikara Instruction (LLM-jp)
---
# Uploaded model
- **Developed by:** taka-too
- **License:** CC-BY-NC-SA-4.0
- **Finetuned from model :** llm-jp/llm-jp-3-13b
- **Training Dataset:** Ichikara Instruction (LLM-jp)
This LLaMA-based model has been fine-tuned for enhanced instruction-following capabilities using the Ichikara Instruction dataset provided by LLM-jp,
which was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024)
# How to Use the Model
You can load the model via the Hugging Face transformers library:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("taka-too/llm-jp-3-13b-it")
model = AutoModelForCausalLM.from_pretrained("taka-too/llm-jp-3-13b-it")
```
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |